
Al-Mansour Journal/ Issue (32) 2019 (32مجلة المنصور/ العدد)

- 1 -

Proposed Modified A* for Three-Dimensional Sphere
Environment

Alia K. Abdul Hassan, PhD (Asst Prof.) Duaa Jaafar Fadhil
*

hassanalia2000@yahoo.com satomi.emoki111@gmail.com

Abstract: Robotic path-planning is a major problem in the robotic world, and one
of the most used algorithms in this area is the A* algorithm. This paper
presents a modified A* Algorithm that can work in a Three-Dimensional
(3D) sphere environment and allows the moving of robot to reach its goal
while avoiding obstacles on its path, solve local minima problems, safety
rim and accurate convergence. The F(n)* evaluation function has been
used in the proposed modified A*. Simulation results showed that the
proposed modified A* guarantee to find near optimal, safe path from the
start position to goal point in 3D static sphere environment with acceptable
execution time.

Keywords: A*, path planning, 3D environment, sphere space.

 Computer Science Department, University of Technology, Baghdad, Iraq

Alia Karim Abdul Hassan, Ph.D. (Assist Prof.) Duaa Jaafar Fhadhil

- 2 -

1. Introduction
Path planning and obstacle avoiding are challenging topics for mobile

robot’s navigation where precise, efficient yet simple algorithms are
needed to guarantee the robot reaching its goal while avoiding any
collision along the path [1,2]. One of the best known path planning
algorithms is the A* algorithm that was successfully implemented and
tested as optimal, complete and easy path planning algorithm for a mobile
robot. Originally the A* algorithm works on 2D environment, in this paper
a proposal is presented to develop the A* version to work in a 3D
environment where the robot has more freedom to move up and down
along with the used to left, right, front and back directions.

A primary problem in the establishment of autonomous robots is the
motion planning problem. In order for the robot to reach the final state
without colliding with other objects or robots along the way, the motion
planning problem determines the sequence of movements that the robot
should follow with minimum possible amount of time [3,4].

The term path planning was used in a large scope of areas such as
robotics, Artificial Intelligence (AI) and Control theory. So each area
uses its own definition for this term. In robotics, path planning deals
with a problem of moving the robot from one point to another [5,6].
Path planning problem is a basic simplified motion planning problem
that deals with the geometric issues only. In such problem assuming
that the only moving entity in the space is the robot ignoring any
dynamic properties of the robot itself, also cutting down motions to
non-contact motions, and by considering the robot as a single rigid
object with its points being fixed in distance to each other. By those
assumptions the robot's movement will be constrained only by the
obstacles [3].

In the motion planning problem, the robot is normally represented
as a rigid object in the space which is called the work space of the
problem, while in the configuration space the robot is represented as a
point in the space and the obstacles are mapped in that space. So,
instead of planning the motion of a dimensional robot, this
configuration transforms the problem into planning the motion of a
point. Those assumptions that transformed the motion planning
problem in work space to a basic path planning problem in the

Al-Mansour Journal/ Issue (32) 2019 (32مجلة المنصور/ العدد)

- 3 -

configuration space, which simplify the problem by considering the
basic issues of finding feasible path and work that out instead of
digging in the additional difficulties [3].

In sphere space, the whole configuration space is bounded by a sphere
with known center-point, and bound each obstacle by sphere shape. By
knowing the center point and the radius of the space and each obstacle it
can accurately compute the distance to the border and obstacles each
time the robot moves to make sure that the robot is contained in the space
of the problem and the path will -if found- is completely collision free
[7,8].

3D path planning nowadays is urgently needed where environments
tend to be unstructured, complex and full of uncertain factors such as
underwater or forests where path planning in simple 2D algorithm is not
efficient [9-11]. In 3D environments the Robot can move freely up and
down in addition to the right, left, front and back traditional moves.

In this paper, 3D space is considered so the robot may choose one of
26 directions instead of the 8 directions that are experienced in the 2D
space. The difficulty of the 3D environment falls in adding an additional
axis to the coordinate system resulting in three parameters X,Y,Z to define
the point in the space in the format: P(x,y,z), instead of the P(x,y).

Section 2 of this paper highlights the related work for the proposed
subject. In section 3, the traditional A* algorithm is explained, and section
4 presents the proposed modified version of the A* algorithm showing in
details all the modifications have been made for this algorithm, while
section 5 discuss the experimental results of running the proposed
algorithm in a Matlab simulated test environments.

2. Related Work
Many researches have been made in the field of path planning

generally in both 2D and 3D environments, The most recent works with A*
algorithm are discussed next:

In 2011, Jiahai Liang proposed a 3D environment A* planner where the
hill climbing method was used under the constraints of the grid, using a
cost model to estimate the running cost for the grid from the starting point
to the target [12]. In 2012, S.M. M. R. Al-Arif, et al, proposed a water

Alia Karim Abdul Hassan, Ph.D. (Assist Prof.) Duaa Jaafar Fhadhil

- 4 -

based rescue system that is based on AI algorithms including the A*
algorithm to choose the best most suited algorithm that would work with
minimum cost and least time resource [13]. In 2013, the A-r-Star
pathfinder which outperforms the A* in uniform gridded sparse world and
was developed by Daniel O., et al. [14].

Modified A* algorithm for mobile robot was represented by Frantisek
D., et al. in 2014 where they focuses on improving the computational time
and path optimality [5]. In 2016, a proposal of an enhanced A* algorithm
was made by Priyanka S. and Velappa G., where the new version was
developed to work efficiently in unknown environments having the ability to
search for optimal path by keeping track of the turns that the robot makes
while moving [15].

The proposed paper is a modification of the A* to work for path
planning in three dimensional environment where the modified version is
proposed to solve the challenges of planning in 3D environments in the
shape of spheres, which was not covered and focused on in the
mentioned related works.

3. Traditional A* algorithm
One of the most efficient and commonly used algorithms is the A*

algorithm [13]. The objective of this algorithm is to compute the shortest
free path available from the given start point to the given goal point [16].
Choosing the next point to move to the path is determined by the ƒ
function's value, the point with the minimum ƒ value will be chosen as the
next step on the path. The ƒ function represents the cost value and can be
calculated for each point in the configuration space by the equation:

F(n) = H(n) + G(n) (1)

where, n is the current point (node) in the configuration space, H(n) is
the cost of moving from the start point to the current point, G(n) is the cost
of moving from the current point to the goal point, F(n) is the ƒ function,
which is the total cost of the current point.

The cost of both H(n) and G(n) is usually computed as the Euclidean
distance that can be computed using the next equation :

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (2)

Al-Mansour Journal/ Issue (32) 2019 (32مجلة المنصور/ العدد)

- 5 -

where x1, x2, y1, y2 are the position parameters for both points.

The A* algorithm uses two main lists to keep track of the work, those
are:

 Open List: stores the extensions of each point that are not explored
yet.

 Close List: The close list stores all the points that are already been
explored including the optimal path points.

Each point on those lists are linked to their parent point (in case the
point is connected to two different parent points then ones that result in
minimum cost are chosen to link to). During the algorithm's execution, if
the open list was empty at any time, then there is no valid path in that
map.

The traditional A* algorithm can be explained in the following steps:

1) Defining the start and goal points.

2) Mapping the obstacles in the space and load them in the close list.

3) Add the start point to both the close list and open list.

4) Extract the extensions of the current point and add them to the open
list –if they already exist in the list then update them according to the
minimum ƒ value- after making sure that they are not included in the
close list already or out of the boundaries of the space, and ignore
them otherwise.

5) If the open list is empty at this stage then there is no available path.

6) If the goal point added to the open list as extension of another point,
then the path is found and can be calculated by the linked parents'
points.

7) If the goal was not found yet then the next step will be the point with
minimum ƒ value in the open list, add the selected point to the close
list and repeat from step (4) [13].

Alia Karim Abdul Hassan, Ph.D. (Assist Prof.) Duaa Jaafar Fhadhil

- 6 -

4. Modified A* for Three-Dimensional sphere environment

The traditional A* algorithm is optimal, complete, easy and best suited
in an offline static environment where the space of the problem is modeled
as a graph and each node in the graph represent a robot’s position [14]. In
this paper, the modified version of this algorithm maintains those
properties while working in a 3D environment by adding the following:

- 3D Environments, to work in 3D space it is needed to declare each
point in the space as three parameter format (x,y,z) instead of the (x,y), so
this modification will apply along all the algorithm whenever is needed to
deal with a point within the space of work.

- 3D-sphere spaces, assuming that the whole configuration space is
contained in a sphere shape and all the obstacles within the space are
contained within sphere shapes as well, so the computations will be made
using the center point and a radius of the sphere, and that makes the
process of finding distance to each obstacle is unified along the way,
which require a matrix to contain each obstacle's radius and center point
to deal with them later in the steps of the proposed version.

- Safety rim, means adding extra space around each obstacle as an
additional length to the radius of the obstacle that is not visual and does
not really exist, but just added computationally to make the steps of the
robot safer around the obstacles. Keeping in mind that {the radius + the
rim >= step size} to ensure that the robot will not pass through the
obstacle in any case.

- Calculating distance, the distance is used as the cost value for each
node, the Euclidean distance in 3D is defied by equation 3:

Distance = √(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (3)

- Open, Close lists, in proposed modified A* version will keep using
those lists with slight change to make them work with the 3D concept, and
here is an explanation for those changes:

 Open list, the only change in this list is extending the parameters to
be 3D like, by storing the points' parameters as x,y,z in the list.

Al-Mansour Journal/ Issue (32) 2019 (32مجلة المنصور/ العدد)

- 7 -

 Close list, in the traditional A* algorithm, the close list will contain all
the obstacles as well as the points from the open list that are already been
visited so, going over the same path more than once will not be done. In
the proposed modified version, the close list contains only the points of the
paths that are already explored including the final optimal path, while the
obstacles will be saved in an individual matrix.

- Expand-list Function, this is a very important function that used to
retrieve the current point's successors. To do so, it needs a series of
checking for the successor's validity before including them in the open list.
Those checks include:

1. Borders check, to ensure that any successor point it needs to
extract falls within the borders of the configuration space.

2. Obstacles check, for each successor point need to test if the
successor is not within or hitting an obstacle, and to do so, a loop is run for
all the obstacles in the space and compute the distance between the
successor and the center of the obstacle and make sure that distance is
larger than the radius of that obstacle with the safety rim added to it.

3. Close-list check, to make sure that the robot will not go through the
same point again, it is needed to check if the successor is already on the
close list, and if so it is just ignored and skipped to the next one.

4. If the successor point passes all the three checks, then is it a valid
point and can add it to the open list in the next step.

- Accurate convergence condition, to check if the robot comes to a
convergence point and that point is accurately positioned on the given
goal point, then a condition is added at each step checking the distance to
the goal point if it was shorter than a threshold value (given as 1 in this
work but can be changed), then the next point's cost will consider the G(n)
value only (instead of the F(n)), and the step size will be equal to the
threshold value divided by two. The threshold value chosen is 1 to make
the robot lands as close as possible to the specified goal point. The
procedure will be working as the following:

When the distance to the goal is equal to or less than the threshold (1),
update the value of the threshold to be the current distance to the goal
then the step will be half of this distance which is the threshold's updated
value. This process will repeat until the robot is close enough to the goal

Alia Karim Abdul Hassan, Ph.D. (Assist Prof.) Duaa Jaafar Fhadhil

- 8 -

with tolerance value equal to 0.02 or any value that can be chosen by trial
and error to suit the work aspects.

- Evaluation Function (F*(n)), to reduce the execution time for
better performance, the original evaluation function F(n) is slightly
changed by fixing the concept to take two times of the G(n) value
against one time H(n), so the effect of the G(n) is heavier when
choosing the successors, which cuts down the number of successors
that are added to the open list along the execution that the algorithm
need to go through and test each round. This will be shown as the
following formula:

F*(n) = H(n) + 2(G(n)) (4)

5. Experimental Results

The proposed modified A* algorithm was simulated using Matlab
programming language in a 3D sphere environment with a 3D sphere
shaped obstacles. The simulation was run on a laptop with Intel® Core™
i7-3517U CPU@1.90GHz , 15.9GB memory and Windows 8.1 Pro.

 The executed environment is basically a cube of size (20×20×20) unit.
Where the actual arena is a sphere shape space of a radius = 10 (the
values were chosen for simulation purposes). The center of the sphere is
at the center of the environment at the coordinates (0,0,0) as (x, y, z). The
proposed modified A* tested to find a path from a specified start point to a
specified goal point. Figure 1 (a) find a path in environment with single
static obstacle, while multi-obstacles is shown in figure 1 (b) and crowded
environment is shown in figure 1 (c).

mailto:CPU@1.90GHz

Al-Mansour Journal/ Issue (32) 2019 (32مجلة المنصور/ العدد)

- 9 -

Figure 2 shows three cases of local minima that may occur when
planning a path. The proposed modified algorithm succeeds to solve these
problems and find a suitable short path.

The planned paths shown in figure 1 and 2 are collision free paths
where the proposed modified A* add a safety rim around each obstacle
to avoid the case when the distance to the obstacle that is against the
robot's current position is smaller than the robot's step, then the robot will
check the next position which passes through the obstacle's edge and
move towards it ignoring the obstacle that’s in the way and avoid collision
with obstacles.

Table 1 shows the execution time and path length for the running of the
proposed modified A* algorithm for the environments showed in figure1
and 2. From table, 1 it can be seen that the proposed modified A* can
solve most of the problems that occur with path planning in 3D
environment and guarantee to find path if one found and in less time.

The planned path with proposed modified A* is near optimal path since
it use the modified F(n)* Evaluation function that has positive affect on
execution time as shown in table 1, also accurate convergence condition
does not exist in the original A* algorithm, allows the float value to
accurate position the element of the environment which will eventually
affect the matching between the final point and the goal and that is where
the condition plays to allow as accurate convergence as possible.

Alia Karim Abdul Hassan, Ph.D. (Assist Prof.) Duaa Jaafar Fhadhil

- 10 -

Table 1. Simulation results

Figure
no.

Modified A* Algorithm

With the original F(n)

Modified A* Algorithm

With the modified F(n)*

Execution time

(seconds)

Path Length

(length units)

Execution time

(seconds)

Path Length

(length units)

1-a 3.9163 20.8137 0.0648 21.2566

1-b 1.0478 19.8407 0.0573 21.719

1-c 0.0642 17.5152 0.0631 17.5152

2-a 5.5347 19.8077 0.1123 19.8077

2-b 7.0019 20.8005 0.0604 20.9932

2-c 4.2476 19.1648 0.2597 19.1648

6. Conclusion
 A proposed modified version for the traditional well known A* algorithm

were developed in this paper. The proposed modified version works in 3D
static known sphere environment where it has the ability to avoid 3D
sphere obstacles and reaching the goal point. The proposed modified
version is near optimal, of simple, complete and collision free with extra
safety constrains provided by the safety rim, it also allow accurate
convergence with the goal point with high speed execution time. As a
future work, the algorithm can be developed further to work in unknown
environments and the path can be smoothed.

Al-Mansour Journal/ Issue (32) 2019 (32مجلة المنصور/ العدد)

- 11 -

References

[1] T. Weerakoon, K. Ishii and A. A. F. Nassiraei, (2015), "AN ARTIFICIAL
POTENTIAL FIELD BASED MOBILE ROBOT NAVIGATION METHOD TO
PREVENT FROM DEADLOCK", JAISCR, Vol. 5, No. 3, pp. 1 89-203.

[2] S. V. Asl, Z. Davarzani and S. Staji, (2015), "Planning Flying Robot
Navigation in a Three-dimensional Space by Optimization Combining Q-
learning and Monte Carlo Algorithms", International Journal of Hybrid
Information Technology Vol.8, No.11 , pp.297-306.

[3] J. C. Latombe, (1991). "Robot Motion Planning", second printing, Kluwer
Academic Publishers, NewYork, USA.

[4] Dr. A. K. A. Hassan, (2014), "Path Planning Method for Single Mobile Robot
in Dynamic Environment Based on Artificial Fish Swarm Algorithm", Eng.
&Tech. Journal, Vol. 32,Part (B), No.2.

[5] F. Ducho, A. Babinec, M. Kajan, P. Beno, M. Florek, T. Fico, L. Jurišica,
(2014), "Path planning with modified A star algorithm for a mobile robot",
ScienceDirect, Procedia Engineering 96 , 59 – 69.

[6] S. H. Shwail, A. Karim, (2014), " Probabilistic Roadmap, A*, and GA for
Proposed Decoupled Multi-Robot Path Planning", IRAQI JOURNAL OF
APPLIED PHYSICS, Vol. 10, No. 2, April-June.

[7] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki and S.
Thrun, (2005), "Principles of robot motion: Theory, Algorithms, and
Implementation", A Bradford Book, The MIT Press, Cambridge, England.

[8] T. A. Jaleel, A. K. A. Hassan, (2016), "Collision Avoidance Using Cat Swarm
Algorithm for Multi Mobile Robot Path Planning in Dynamic Environment",
Iraqi Journal of Science, Vol. 57, No.3C, pp:2348-2359.

[9] L. Yang, J. Qi, D. Song, J. Xiao, J. Han and Y. Xia, (2016), "Review Article,
Survey of Robot 3D Path Planning Algorithms", Hindawi Publishing
Corporation, Journal of Control Science and Engineering, Article ID 7426913.

[10] Sreeja Banerjee (2014), "A COMPARATIVE STUDY OF UNDERWATER
ROBOT PATH PLANNING ALGORITHMS FOR ADAPTIVE SAMPLING IN A
NETWORK OF SENSORS", University of Nebraska – Lincoln.

[11] L. Yang, J. Xiao, J. Qi, L. Yang, L. Wang and J. Han, (2016), "GART: An
environment-guided path planner for robots in crowded environments under
kinodynamic constraints", International Journal of Advanced Robotic
Systems ,November-December: 1–18, DOI: 10.1177/1729881416671111.

Alia Karim Abdul Hassan, Ph.D. (Assist Prof.) Duaa Jaafar Fhadhil

- 12 -

[12] J. Liang, (2011), "A Path Planning Algorithm of Mobile Robot in Known 3D
Environment", Procedia Engineering, Published by Elsevier Ltd. Open
access under CC BY-NC-ND license.

[13] S.M. M. R. Al-Arif, A. H. M. I. Ferdous and H. S. Nijami, (2012), "Comparative
Study of Different Path Planning Algorithms: A Water based Rescue System",
International Journal of Computer Applications (0975-8887), Volume 39 –
No.5.

[14] D. Opoku, A. Homaifar, E. Tunstel, (2013), "The A-r-Star (A*r) Pathfinder",
International Journal of Computer Applications (0975 – 8887), Volume 67–
No.8, April.

[15] P. Sudhakara and V. Ganapathy, (2016), "Trajectory Planning of a Mobile
Robot using Enhanced A-Star Algorithm",Indian Journal of Science and
Technology, Vol 9(41), DOI: 10.17485/ijst/2016/v9i41/93816, November.

[16] S. H. Shwail, A. Karim, S. Turner, (2012), "Probabilistic Multi Robot Path
Planning in Dynamic Environments: A Comparison between A* and DFS",
International Journal of Computer Applications (0975 8887).

Al-Mansour Journal/ Issue (32) 2019 (32مجلة المنصور/ العدد)

- 13 -

لتخطيط مسار الروبوت في بيئة ثلاثية الأبعاد ذات *A لخوارزميةمقترح نموذج معدل
 الشكل الكروي

د. علياء كريم عبد الحسن م. أ.
*

دعاء جعفر فاضل
*

تخطيط مسار الروبوت يعتبر من المشاكل الأساسية في عالم الروبوت، وواحدة من اكثر :المستخلص
. هذا البحث يقترح نموذج معدل من *Aالخوارزميات المستخدمة في هذا المجال هي خوارزمية

قادرة على العمل في بيئة ثلاثية الأبعاد ذات شكل كروي حيث تقود الخوارزمية الروبوت *A خوارزمية
 Localلوصول الى الهدف دون التصادم مع أي من العوائق الموجودة على الطريق، موفرة حل لمشاكل ل

Minima الى تقارب دقيق مع الهدف واستخدامها لدالة تقييم معدلة ضافةبالإ، مضيفة شريط الحماية
(F(n)*) .قترحة من خوارزمية نتائج محاكاة النظام وتطبيقه برمجيا تظهر ان النسخة الم لتحسين الأداء

A* تضمن ايجاد اقرب افضل حل، بحيث يكون آمن من موقع الاقلاع بنقطة البداية حتى الهدف في بيئة
 ثابتة ثلاثية الابعاد ذات شكل كروي وبوقت تنفيذ جيد.

 .كروية مساحة ،الأبعاد ثلاثية بيئة ،المسار تخطيط ، *A الكلمات المفتاحية:

*
 ، العراقبغداد ، التكنولوجية الجامعة, الحاسوب علوم قسم

