
Logic Design Lecturer: Ahmed Saeed

Page | 75

 Chapter 4: Combinational circuits

Digital circuits can be classified into two types:

→ Combinational Logic circuits and (Chapter 4)

→ Sequential Logic circuits (Chapter 5)

Combinational Logic Circuit

 Combination Logic Circuits are made up from basic gates (AND, OR, NOT) or universal

gates (NAND, NOR) gates that are "combined" or connected together to produce more

complicated switching circuits. These logic gates are the building blocks of

combinational logic circuits. An example of a combinational circuit is a decoder, which

converts the binary code data present at its input into a number of different output lines,

one at a time producing an equivalent decimal code at its output.

 In these circuits “the outputs at any instant of time depends on the inputs present at that

instant only.”

 For examples of combinational digital circuits are Half adder, Full adder, Half

subtractor, Full subtractor, Code converter, Decoder, Multiplexer, Demultiplexer,

Encoder, ROM, etc.

The “n” binary input variable come from an external source, the “m” binary output

variable go to an external destination and in between there is an interconnection of logic

gates.

A combinational circuit can be described by a truth table showing the binary

relationship between the “n” input and the “m” output variables.

Combinational

Circuit

n Input

variables
m output

variables

Logic Design Lecturer: Ahmed Saeed

Page | 76

S

 C

Input

bits

Output

bits

Fig 1.1: Combinational Digital Circuit.

 Half-adder

The most basic digital arithmetic circuit is the addition of two binary digits. A

combinational circuit that performs the arithmetic addition of two bit is called a half-adder.

The operations are performed by a logic circuit called a half-adder. The half-adder accepts

two binary digits on its inputs and produces two binary digits on its outputs, a sum bit and

a carry bit. A half-adder is represented by the logic symbol in Fig. (1.2).

Table 1: Half-adder truth table.

Input Output

A B Carry (C) Sum (S)

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Sum = A̅B + AB̅ = A B

Carry = AB

B

A

Combinational Digital Circuits

Arithmetic &
Logical

Functions

Adders

Subtractors

Comparitors

Data
Transmission

Multiplexers

Demultiplexers

Encoders

Decoders

Code
Converters

Binary

BCD

7-Segment

Logic Design Lecturer: Ahmed Saeed

Page | 77

Input

bits

Output

bits COut

S

Fig 1.2: Half-adder circuit.

 Full Adder

The second category of adder is the full-adder. The full-adder accepts two input

bits and an input carry and generates a sum output and an output carry.

The basic difference between a full-adder and a half-adder is that the full-adder

accepts an input carry. A logic symbol for a full-adder is shown in Fig. (1.3), and the truth

table in Table 2 shows the operation of a full-adder.

Table 2: Full-adder truth table.

Input Output

A B Cin Carry (C) Sum (S)

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

(A)

S = A̅B + AB̅

C = AB

(B)

S = A B

C = AB

B

A

Cin

Logic Design Lecturer: Ahmed Saeed

Page | 78

𝑆 = �̅��̅�𝐶 + �̅�𝐵𝐶̅ + 𝐴�̅�𝐶̅ + 𝐴𝐵𝐶

 = 𝐶 (�̅��̅� + 𝐴𝐵) + 𝐶̅ (�̅�𝐵 + 𝐴�̅�)

 = 𝐶 (𝐴 𝐵̅̅ ̅̅ ̅̅ ̅̅) + 𝐶̅ (𝐴 𝐵)

S = A B C

Cout = A̅BC + AB̅C + ABC̅ + ABC

 = 𝐶 (�̅�𝐵 + 𝐴�̅�) + 𝐴𝐵 (𝐶̅ + 𝐶)

Cout = 𝐴𝐵 + 𝐶 (𝐴 𝐵)

Fig 1.3: Full-adder circuit.

Example: Implement the full adder with half adder gates.

Solution:

Logic Design Lecturer: Ahmed Saeed

Page | 79

Output

bits

Input

bits

𝐴 𝐵

𝐴𝐵

𝐶 (𝐴 𝐵)

𝐴𝐵

𝑆

𝐶𝑜

Example: Implement the full adder circuit block diagram using half adder gates.

Solution: S = A B C

 Cout = 𝐴𝐵 + 𝐶 (𝐴 𝐵)

 Half-Subtractors

Combinational circuit that subtract two bits and produces their difference. The truth

table for the input and output relationships of a half-subtractor con be derived as follows:

Table 3: Half-Subtractor truth table.

Input Output

A B Borrow

(B)

Difference

(D)

0 0 0 0

0 1 1 1

1 0 0 1

1 1 0 0

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = �̅�𝐵 + 𝐴�̅� = 𝐴 𝐵

𝐵𝑜𝑟𝑟𝑜𝑤 = �̅�𝐵

A

 B

D

 BOut

Logic Design Lecturer: Ahmed Saeed

Page | 80

D

 BOut

Output

bits

Input

bits

 Full-Subtractors

Combinational circuit that performs a subtraction between two bits, taking into

account that a 1 may have been borrowed by a lower significant stage. It has three input

and two output. The truth table for the circuit is as follows:

Input Output

A B C Borrow

(B)

Difference

(D)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

𝐷 = �̅��̅�𝐶 + �̅�𝐵𝐶̅ + 𝐴�̅�𝐶̅ + 𝐴𝐵𝐶

 = 𝐶̅ (�̅�𝐵 + 𝐴�̅�) + 𝐶 (�̅��̅� + 𝐴𝐵)

 = 𝐶̅ (𝐴 𝐵) + 𝐶 (𝐴 𝐵̅̅ ̅̅ ̅̅ ̅̅)

𝐷 = 𝐴 𝐵 𝐶

B = �̅��̅�𝐶 + �̅�𝐵𝐶̅ + �̅�𝐵𝐶 + 𝐴𝐵𝐶

 = 𝐶 (�̅��̅� + 𝐴𝐵) + �̅�𝐵 (𝐶̅ + 𝐶)

B = �̅�𝐵 + 𝐶 (𝐴 𝐵̅̅ ̅̅ ̅̅ ̅̅)

A

 B

 C

D

B
B

D

Logic Design Lecturer: Ahmed Saeed

Page | 81

Borrow

Example: Design a full subtractor circuit block diagram using half subtractor.

Solution:

 Parallel adder:

Called Parallel Adder because inputs are presented simultaneously (in parallel).

Also, called Ripple-Carry Adder. We can connect multi-adders to add two binary number.

The number of adders used depend on the number of bits in each number. For two number

of two bits, 2 adders are needed, and for 3 bits number, three adders are needed. The figure

below shows the binary adders for two number with 4 bits each. The first column requires

only a half adder. For any column above the first, there may be a carry form the preceding

column, therefore, we must use a full adder for each column above the first.

Logic Design Lecturer: Ahmed Saeed

Page | 82

LSB MSB

Example: Use the 4-bit parallel adder to find the sum and output carry for the addition of

the following two 4-bit numbers 1100 and 1100 if the input carry (Cn-1) is 0.

Solution:

B1 A1

S1

HA

Cout

S5

B2 A2

S2

FA

B3 A3

S3

FA

B4 A4

S4

FA

0 0

0

FA

Cout

0 0

0

FA

1 1

0

FA

1 1

1

FA

Output

Input

Cout Cout Cout

Cin

Cout

Cin

Cout

Cin

Cout

Cout Cout Cout

1 0 0 Cn-1

0
1

Logic Design Lecturer: Ahmed Saeed

Page | 83

Example: Design an adder/subtractor circuit using full adders and gats.

Solution:

When:

X=0: adding operation and output result = S5S4S3S2S1

X=1: subtracting operation and output result = S3S2S1S0 whole S5 or C5 will be neglected

due to 2’s complement operation.

C1

A1

S1

FA

C2

S5=C5

A2

S2

FA

C3

A3

S3

FA

C4

A4

S4

FA

B1 B2 B3 B4

X

Logic Design Lecturer: Ahmed Saeed

Page | 84

 Parity generator/checker

Parity is a very useful tool in information processing in digital computers to indicate

any presence of error in bit information. External noise and loss of signal strength cause

loss of data bit information while transporting data from one device to other device, located

inside the computer or externally. To indicate any occurrence of error, an extra bit is

included with the message according to the total number of 1s in a set of data, which is

called parity. The two methods used are:

1- Even Parity

It means attaching an extra bit to a group of bits to produce an even number of (1).

2- Odd Parity

It means attaching an extra bit to a group of bits to produce an odd number of (1).

The table list below shows the parity bit for BCD code number for both even and odd

parity:

BCD Even Parity Odd Parity

0 0 0 0 0 1

0 0 0 1 1 0

0 0 1 0 1 0

0 0 1 1 0 1

0 1 0 0 1 0

0 1 0 1 0 1

0 1 1 0 0 1

0 1 1 1 1 0

1 0 0 0 1 0

1 0 0 1 0 1

Logic Design Lecturer: Ahmed Saeed

Page | 85

Notes:

 The parity bit can be attached to the code group at either the beginning or the ends

depending on the system design.

 The odd parity is always the complement of even parity bit.

 The parity bit generator operation is made at transmission side and the parity

checking operation is made at receiving side.

Parity logic:

In order to check for generation the parity in a given code word, the basic principle

can used is the sum. The sum of an even numbers of 1’s is always zero, and the sum of odd

numbers of 1’s is always one. Therefore, in order to determine if the given word is even or

odd parity all of the bits in that code word are summed.

Example: Design and even/odd parity generator for 3 bit data.

Solution:

A Truth table of even parity and odd parity is show as below:

Input Output

C B A Even Parity Pe Odd Parity Po

0 0 0 0 1

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 0

Logic Design Lecturer: Ahmed Saeed

Page | 86

𝑃𝑒 = �̅��̅�𝐶 + �̅�𝐵𝐶̅ + 𝐴�̅�𝐶̅ + 𝐴𝐵𝐶

= �̅�(�̅�𝐶 + 𝐵𝐶̅) + 𝐴(�̅��̅� + 𝐵𝐶)

= �̅�(𝐵 ⊕ 𝐶) + 𝐴(𝐵 ⊕ 𝐶)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑃𝑒 = 𝐴 ⊕ 𝐵 ⊕ 𝐶

𝑃𝑜 = �̅��̅�𝐶 + �̅�𝐵𝐶̅ + 𝐴�̅�𝐶̅ + 𝐴𝐵𝐶

= �̅�(�̅�𝐶̅ + 𝐵𝐶) + 𝐴(�̅�𝐶 + 𝐵𝐶̅)

= �̅� (𝐵 ⊕ 𝐶)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝐴(𝐵 ⊕ 𝐶)

𝑃𝑜 = 𝐴 ⊕ 𝐵 ⊕ 𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

Example: Suppose you receive a binary bit word “0101” and you know you are using an

odd parity. Is the binary word error?

Solution:

 The answer is yes.

 There are 2 1-bit, which is an even number

 We are using an odd parity

 So there must have an error.

A

B

C

Even

Odd

A

B

C

Logic Design Lecturer: Ahmed Saeed

Page | 87

Example: Assume we are using even parity with 7-bit.The letter in 7-bit is encoded as

0110101. How will the letter be transmitted? If we are using odd parity, how will the letter

be transmitted?

Solution:

 Because there are four 1s (an even number), parity is set to zero.

 This would be transmitted as: 01101010.

 If we are using an odd parity:

 The letter will be transmitted as 01101011.

Example: Suppose you are using an odd parity. What should the binary word “1010” look

like after you add the parity bit?

Solution:

 There is an even number of 1-bits.

 So we need to add another 1-bit

 Our new word will look like “10101”.

 Comparator

A magnitude comparator is a combinational circuit that compares two numbers (A

and B) and determine their relative magnitudes. The output of the comparison are specified

by 3 binary variables that indicate whether (A=B) or (A>B) or (A<B).

To compare two numbers having n-bits, we have 2n entries in the truth table. The

block diagram for comparator is shown below:

A >

B

Z2

Z1

Z3

<

=

Logic Design Lecturer: Ahmed Saeed

Page | 88

For two binary numbers with one-bit comparator the truth table is:

Input Output

A B (A>B), Z1 (A<B), Z2 (A=B), Z3

0 0 0 0 1

0 1 0 1 0

1 0 1 0 0

1 1 0 0 1

𝑍1 = 𝐴�̅�, 𝑍2 = �̅�𝐵, 𝑍3 = �̅��̅� + 𝐴𝐵 = 𝐴 ⊕ 𝐵̅̅ ̅̅ ̅̅ ̅̅

A

B

Z1

Z2

Z3

Logic Design Lecturer: Ahmed Saeed

Page | 89

Example: Compare two binary numbers having 2-bits each.

Solution: A=A1A0, B=B1B0

Input Output

A B

A1 A0 B1 B0 (A>B), Z1 (A<B), Z2 (A=B), Z3

0 0 0 0 0 0 1

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 1

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 0 1

1 0 1 1 0 1 0

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 0 0 1

(𝐴 > 𝐵) = 𝐴1
̅̅ ̅𝐴0𝐵1

̅̅ ̅ 𝐵0
̅̅ ̅ + 𝐴1 𝐴0

̅̅ ̅ 𝐵1
̅̅ ̅ 𝐵0

̅̅ ̅ + 𝐴1 𝐴0
̅̅ ̅ 𝐵1

̅̅ ̅ 𝐵0 + 𝐴1𝐴0𝐵1
̅̅ ̅ 𝐵0

̅̅ ̅ + 𝐴1𝐴0𝐵1
̅̅ ̅ 𝐵0

+ 𝐴1𝐴0𝐵1𝐵0

By using K-Map we get

𝐴 > 𝐵: = 𝐴1𝐵1̅̅̅̅ + 𝐴0 𝐵0̅̅ ̅̅ 𝐴1̅̅̅̅ 𝐵1̅̅̅̅ + 𝐴1𝐵1 𝐴0 𝐵0̅̅ ̅̅

= 𝐴1𝐵1̅̅ ̅̅ + 𝐴0𝐵0̅̅ ̅̅ (𝐴1̅̅ ̅̅ 𝐵1̅̅ ̅̅ + 𝐴1𝐵1)

= 𝐴1𝐵1̅̅̅̅ + 𝐴0𝐵0̅̅̅̅ 𝑋1

Logic Design Lecturer: Ahmed Saeed

Page | 90

 (𝐴 < 𝐵) = 𝐴1̅̅̅̅ 𝐴0̅̅̅̅ 𝐵1̅̅ ̅̅ 𝐵0 + 𝐴1̅̅̅̅ 𝐴0̅̅̅̅ 𝐵1𝐵0̅̅̅̅ + 𝐴1̅̅̅̅ 𝐴0̅̅̅̅ 𝐵1𝐵0 + 𝐴1̅̅̅̅ 𝐴0𝐵1𝐵0̅̅̅̅ + 𝐴1̅̅̅̅ 𝐴0𝐵1𝐵0

+ 𝐴1𝐴0̅̅̅̅ 𝐵1𝐵0

By using K-Map we get

𝐴 < 𝐵: = 𝐴1̅̅̅̅ 𝐵1 + 𝐴0̅̅̅̅ 𝐵0𝐴1̅̅̅̅ 𝐵1̅̅ ̅̅ + 𝐴0̅̅̅̅ 𝐵0𝐴1𝐵1

= 𝐴1̅̅̅̅ 𝐵1 + 𝐴0̅̅̅̅ 𝐵0(𝐴1̅̅̅̅ 𝐵1̅̅ ̅̅ + 𝐴1𝐵1)

= 𝐴1̅̅̅̅ 𝐵1 + 𝐴0̅̅̅̅ 𝐵0 𝑋1

(𝐴 = 𝐵) = 𝐴1̅̅̅̅ 𝐴0̅̅̅̅ 𝐵1̅̅ ̅̅ 𝐵0̅̅ ̅̅ + 𝐴1̅̅̅̅ 𝐴0𝐵1̅̅̅̅ 𝐵0 + 𝐴1𝐴0̅̅̅̅ 𝐵1𝐵0̅̅̅̅ + 𝐴1𝐴0𝐵1𝐵0

= (𝐴1̅̅̅̅ 𝐵1̅̅ ̅̅ + 𝐴1𝐵1) (𝐴0̅̅̅̅ 𝐵0̅̅ ̅̅ + 𝐴0𝐵0)

= 𝑋1𝑋0

Logic Design Lecturer: Ahmed Saeed

Page | 91

 Decoder and Encoder

Decoder

A decoder is a combinational logic circuit that converts coded information such as

binary, into a recognizable form, such as decimal. That decoders are called n-to-m line

decoders where n is the input and m is the output.

There are many type of decoders such as, binary decoder, BCD decoder and 7-

segment decoder…etc.

Binary decoder

It converts binary coded information into a decimal recognizable form. The output

lines of this decoder is 2n where “n” is the number of bits of binary input such as 2x4

decoder, 3x8 decoder, 4x16 decoder.

A 2x4 line decoder circuit is shown below with its truth table:

Input Output

A B D0 D1 D2 D3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

𝐷0 = �̅��̅�, 𝐷1 = �̅�𝐵, 𝐷2 = 𝐴�̅� 𝑎𝑛𝑑 𝐷3 = 𝐴𝐵

A

B
D0

D1

D2

D3

Logic Design Lecturer: Ahmed Saeed

Page | 92

A

B

C

D

a

b

c

d

e

f

g

BCD to 7-segment decoder

For this type of decoder, the input is BCD digit and the output is a decimal digit

display as shown: -

 Input Output

 A B C D a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

BCD to 7-

segment

display

a

f

e

b g

c

d

1 2 3 4 5

6 7 8 0 9

Logic Design Lecturer: Ahmed Saeed

Page | 93

Note: If the 7-segment work active high it mean 1 is on and 0 is off, if work active low it

means 0 is on and 1 is off.

Example: Implement a full-adder circuit with a decoder and two OR gates.

Solution: Form the truth table of full-adder below we obtain the function for this

combinational circuit:

Table 2: Full-adder truth table.

Input Output

A B Cin Carry (C) Sum (S)

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

S (A, B, C) =∑1, 2, 4, 7

C (A, B, C) =∑3, 5, 6, 7

A

B

C

S

C

C

Logic Design Lecturer: Ahmed Saeed

Page | 94

Example: Implement the following Boolean function with a decoder

𝐹 = �̅�𝐵 + 𝐴𝐶 + 𝐵𝐶 + �̅�𝐶̅

Solution:

𝐹 = �̅�𝐵(𝐶 + 𝐶̅) + 𝐴𝐶(𝐵 + �̅�) + 𝐵𝐶(𝐴 + �̅�) + �̅�𝐶̅(𝐴 + �̅�)

= �̅�𝐵𝐶 + �̅�𝐵𝐶̅ + 𝐴�̅�𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + �̅�𝐵𝐶 + 𝐴�̅�𝐶̅ + �̅��̅�𝐶̅

= �̅�𝐵𝐶 + �̅�𝐵𝐶̅ + 𝐴�̅�𝐶 + 𝐴𝐵𝐶 + 𝐴�̅�𝐶̅ + �̅��̅�𝐶̅ = ∑0,2,3,4,5,7

Decoder with enable input:

This type of decoder can be used to construct one or more of decoder circuit. A 2x4

decoder with an enable input constructed with NAND gat is shown below. The circuit

operates with complemented outputs and a complement input. In general, a decoder may

operate with complemented or un-complemented output. The enable i/p may be activated

with “1” or with a “0” signal. Some decoder have 2 or more enable input that must satisfy

a given logic conditions in order to enable the circuit.

Input Output

E A B D1 D2 D3 D4

1 x x 1 1 1 1

0 0 0 0 1 1 1

0 0 1 1 0 1 1

0 1 0 1 1 0 1

0 1 1 1 1 1 0

𝐷0 = �̅��̅��̅�̅̅ ̅̅ ̅̅ , 𝐷1 = �̅��̅�𝐵̅̅ ̅̅ ̅̅ , 𝐷2 = �̅�𝐴�̅�̅̅ ̅̅ ̅̅ , 𝐷3 = �̅�𝐴𝐵̅̅ ̅̅ ̅̅

A

B

C

F

B

C

2x4

Decoder

with

enable

input

A

B

D0

D1

D2

D3

E

Logic Design Lecturer: Ahmed Saeed

Page | 95

Example: Design a 3x8 decoder using two 2x4 decoder with enable input.

Solution:

E

A B

D0

D2

D3

D1

Logic Design Lecturer: Ahmed Saeed

Page | 96

Example: Design a 4x16 decoder using two 3x8 decoder with enable input.

Solution:

Example: Implement the following logic function using 2x4 decoder

𝐹 = ∑ (0, 2, 5, 7)

Solution:

𝐹 = �̅��̅�𝐶̅ + �̅�𝐵𝐶̅ + 𝐴�̅�𝐶 + 𝐴𝐵𝐶

This function should be implement with 3x8 decoder. To implement it with a 2x4 decoder

there two methods:

1- By using two 2x4 decoder with enable inputs.

3x8

Decoder

A

B

3x8

Decoder

A

B

C

E

C

D0

D7

D8

D15

F

Logic Design Lecturer: Ahmed Saeed

Page | 97

2- By simplifying the Boolean function

𝐹 = �̅��̅�𝐶̅ + �̅�𝐵𝐶̅ + 𝐴�̅�𝐶 + 𝐴𝐵𝐶

𝐹 = �̅�𝐶̅(�̅� + 𝐵) + 𝐴𝐶(�̅� + 𝐵)

𝐹 = �̅�𝐶̅ + 𝐴𝐶 = ∑ (0, 3)

Homework: Design 4x16 decoder by using 2x4 decoder.

Homework: Design 3x8 decoder by using 1x2 decoder.

F

Logic Design Lecturer: Ahmed Saeed

Page | 98

Encoder

An encoder is a digit circuit that performs the inverse operation of a decoder. An

encoder has 2n (or less) input lines and n output lines.

It has eight inputs, and three outputs that generate the corresponding binary number.

An example of encoder is the octal to binary encoder whose truth table is shown below:

Input Output

D7 D6 D5 D4 D3 D2 D1 D0 A2 A1 A0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1

𝐴0 = 𝐷1 + 𝐷3 + 𝐷5 + 𝐷7

𝐴1 = 𝐷2 + 𝐷3 + 𝐷6 + 𝐷7

𝐴2 = 𝐷4 + 𝐷5 + 𝐷6 + 𝐷7

(Implementation in three OR gates)

Encoder 2n i/p n o/p

Logic Design Lecturer: Ahmed Saeed

Page | 99

Example: Design encoder that convert decimal number to BCD.

Solution:

This type of encoder has tem inputs one for each decimal digit and four outputs

corresponding to the BCD code

Input (Decimal) Output (BCD)

D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 A B C D

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 1

0 0 0 1 0 0 0 0 0 0 0 1 1 0

0 0 1 0 0 0 0 0 0 0 0 1 1 1

0 1 0 0 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 1

𝐷 = 𝐷1 + 𝐷3 + 𝐷5 + 𝐷7 + 𝐷9

𝐶 = 𝐷2 + 𝐷3 + 𝐷6 + 𝐷7

𝐵 = 𝐷4 + 𝐷5 + 𝐷6 + 𝐷7

𝐴 = 𝐷8 + 𝐷9

Logic Design Lecturer: Ahmed Saeed

Page | 100

Logic Design Lecturer: Ahmed Saeed

Page | 101

 Multiplexers and Demultiplexers

Multiplexers

A multiplexer is a combinational circuit that receiver binary information form one

of 2n input data lines and directs it to a single output line. Multiplexer is called Data

Selector.

The selection of a particular input data line for the output is determined by a set of

selection inputs. A 2n- to- 1 multiplexer has 2n input data line and n input selection lines

whose bit combinations determine which data are selected for the o/p..

Example: Design 4X1 multiplexer.

Solution: 2n =4 n=2 No. of selection line =2

Selected Data

S1 S0 D

0 0 D0

0 1 D1

1 0 D2

1 1 D3

𝐹 = 𝑆1̅̅ ̅ 𝑆0̅̅ ̅𝐷0 + 𝑆1̅̅ ̅𝑆0𝐷1 + 𝑆1𝑆0̅̅ ̅𝐷2 + 𝑆1𝑆0𝐷3

MUX

2n x 1
2n i/p

o/p

n Data Selector

Logic Design Lecturer: Ahmed Saeed

Page | 102

Example: Implement the following logic function using a multiplexer.

𝐹(𝐴, 𝐵, 𝐶) = ∑(1, 3, 5, 6)

Solution:

A B C F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

If we take the B C is the selector so A as input

If we take the A B is the selector so C as input

 D0 D1 D2 D3

�̅� 0 1 2 3

A 4 5 6 7

 0 1 A A̅

 D0 D1 D2 D3

𝐶̅ 0 2 4 6

C 1 3 5 7

 C C C C̅

4x1

MUX

D0

D1

D2

D3

F

B

C

0

1

A̅

A

S1 S0

4x1

MUX

A

B

F

C

S1 S0

D0

D1

D2

D3

Logic Design Lecturer: Ahmed Saeed

Page | 103

Example: Implement the following logic function using a multiplexer.

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ∑(0, 1, 3, 4, 8, 9, 15)

Solution:

Homework: Design 4x1 multiplexer by using 2x1 multiplexer.

Homework: Design 8x1 multiplexer by using 2x1 multiplexer.

Homework: Design 8x1 multiplexer by using two 4x1 multiplexer and one 2x1 multiplexer.

 D0 D1 D2 D3 D4 D5 D6 D7

�̅� 0 1 2 3 4 5 6 7

A 8 9 10 11 12 13 14 15

 1 1 0 �̅� �̅� 0 0 A

Logic Design Lecturer: Ahmed Saeed

Page | 104

i/p

Demultiplexers

A demultiplexer basically reverses the multiplexing function. It takes digital

information from one line and distributes it to a given number of output lines. For this

reason, the demultiplexer is also known as a data distributor.

No. of selected line = n

Example: Design 1 to 4 demultiplexer.

Solution:

A 1 to 4 lines demultiplexer circuit. The data input line goes to all of the AND

gates. The two data select lines enable only one gate at a time, and the data appearing on

the data input line will pass through the selected gate to the associated data output line.

No. of selected line to control 4 O/P = 2

Input Output

S1 S0 D0 D1 D2 D3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

2n o/p
DeMUX

1x 2n

n Data Selector

