TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	Al- Mansour University College		
2. University Department/Centre	Communication Engineering Department		
3. Course title/code	Electromagnetic Fields Theory - 1		
4. Programme(s) to which it contributes			
5. Modes of Attendance offered	Weekly – Lectures		
6. Semester/Year	First Semester / 2020 - 2021		
7. Number of hours tuition (total)	45 Hours		
8. Date of production/revision of this specification	28-6-2021		
9. Aims of the Course			
Graduating cadres with the necessary foundations to work in the field of communications, whether in the practical or academic aspects.			

10. Learning Outcomes, Teaching ,Learning and Assessment Methode

A- Knowledge and Understanding

A1. A1- Understand the subject of electromagnetic fields in general. A2- Learn how to deal with the electric and magnetic fields separately. A3- Linking the electric and magnetic fields within the electromagnetic field. A4- Studying the wave motion of the electromagnetic field within the subject of electromagnetic wave propagation, which is one of the basics of communications.

B. Subject-specific skills

B1. B1 - B1 - Training the student to deal with different practical situations by solving problems in this direction. B2 - Training the student to take advantage of the academic foundations to advance to advanced methods and techniques that are directed towards graduation projects.

Teaching and Learning Methods

1- Theoretical lectures with solving various practical examples.

2- Homework.

Assessment methods

- 1- Assessment of class exercises
- 2- Evaluation of extra-curricular exercises
- 3- Semester exams

C. Thinking Skills

- C1- Training students on the behavior of the scientific approach in investigation and research.
- C2 Training students on scientific reasoning about dealing with different issues and situations.

- D. General and Transferable Skills (other skills relevant to employability and personal development)
 - D1- Enable the student to obey the foundations he has received in order to be able to apply them in different aspects of life.
 - D2 Develop the student's ability to adopt these foundations so that he is able to transfer them to others.

11. Co	11. Course Structure				
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1-2	6	Introduction to vectors	Vector Analysis	Theoretical lectures	class homework and assessment exams
3-6	12	Basics of electricity	Electrostatics	Theoretical lectures	class homework and assessment exams
7-10	12	Electrostatics laws	Gauss' Law	Theoretical lectures	class homework and assessment exams
11-13	9	Concept of potential	Energy and Potential	Theoretical lectures	class homework and assessment exams
14-15	6	Introduction to electric dipoles	Electric Dipoles	Theoretical lectures	class homework and assessment exams

12. Infrastructure				
Required reading:	Theory and Problems of Electromagnetics, by			
 CORE TEXTS COURSE MATERIALS OTHER 	Joseph A. Edminister Fudamentals of Applied Electronics , by Fawwaz			