TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.

1. Teaching Institution	Al- Mansour University College		
2. University Department/Centre	Communication Engineering Department		
3. Course title/code	Electronic Physics		
4. Programme(s) to which it contributes			
5. Modes of Attendance offered	Weekly – Lectures		
6. Semester/Year	2020 – 2021 (First Semester)		
7. Number of hours tuition (total)	30 Hours.		
8. Date of production/revision of this specification	26- 4 - 2021		
9. Aims of the Course			
Introducing the subject of electronic physics and its various methods used in solving various electrical problems.			

10. Learning Outcomes, Teaching ,Learning and Assessment Methode

- A- Knowledge and Understanding
 - A1. Understanding the topic of semiconductors.
 - A2. Identify electronic equipment manufactured from semiconductors.
 - A3. Linking previous knowledge to applied electronic circuits.

.

- B. Subject-specific skills
- B1. Training the student to deal with different situations in electrical in general.
- B2. Training the student on modeling practical issues related to electronic circuits.

Teaching and Learning Methods

- 1- Theoretical lectures with solving various practical examples.
- 2- Homework.

Assessment methods

- 1- Assessment of class exercises
- 2- Evaluation of extra-curricular exercises
- 3- Semester exams

C. Thinking Skills

- C1. Training students on the behavior of the scientific approach in investigation and research.
- C2. Students get scientific conclusion about dealing with different issues and situations.

Teaching and Learning Methods

Theoretical lectures with related seminars.

- D. General and Transferable Skills (other skills relevant to employability and personal development)
 - D1. Enable the student to know the topic of semiconductors and electronic circuits and link the two branches with each other.
 - D2. Enable the student to obey the foundations he has received so that he can apply them in different aspects of life.

11. Course Structure					
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1 - 2	4	Atomic Structure Fundamental	Atomic Structure	Theoretical Lectures	Exams and class assessment
3 - 4	4	Semiconductors Fundamentals	Semiconductors	Theoretical Lectures	Exams and class assessment
5 - 6	4	Diodes Fundamentals	Diodes	Theoretical Lectures	Exams and class assessment
7 – 8	4	Diode Characteristic Curves	Diode Characteristics	Theoretical Lectures	Exams and class assessment
9 - 10	4	Principles of Ideal Diode and Diode Model	Ideal diode and diode model	Theoretical Lectures	Exams and class assessment
11- 12	4	Applications in D.C. circuits	D.C. Applications	Theoretical Lectures	Exams and class assessment
13-14	4	Fundamentals of Alternating Voltages	A.C. Voltage	Theoretical Lectures	Exams and class assessment
15	2	Applications of alternating circuits	A.C. Applications	Theoretical Lectures	Exams and class assessment

12. Infrastructure		
Required reading:	Semiconductor Devices, by: Tocci	
CORE TEXTSCOURSE MATERIALSOTHER		