
Lecture 3

1. Gvta racter set:
C++ has the letters and digits, as show below:

Uppercase: A, B, c, ... , z

Lowercase: a, b, c, ... , z

Digits: o, 1, 2, ... ,9

Special Characters: All characters other than listed treated as special

characters for example:

+ * I A

([{ }]

) < = > , (Comma)

\\
(Double Conati ons) . (Dot) : (Colon) ; (Semicolon) i....i (Blank Space)

In C++ language, upper case and lower case letters are distinct and hence

there are 52 letters in all. For example bag is different from Bag which is

different from BAG.

2 ,~eV\,ttfters:
An identifier is a name given to some program entity, such as variable,

constant, array, function, structure, or class. An identifier is a sequence of

alphanumeric (alphabetic and numeric) characters, the first of which must be

a letter, and can't contain spaces. The length of an identifier is machine

dependent. C++ allows identifiers of up to 127 characters.

A variable should not begin with a digit. C++ does not set a maximum

length for an identifier. Some examples of valid identifiers are as follows:

My_name

B

(7 char.)

(1 char.)

(1 char.)

Examples of invalid identifiers are:

3ab a()test ros sal

The keywords are also identifiers but cannot be user defined, since they

are reserved words. All the keywords should be in lower case letters. Reserved

words cannot be used as variable names or constant. The following words are

reserved for use as keywords:

Some of C++ Language Reserved Words:
break case char Cln cout
delete double else enum false
float for goto if int
lonq main private public short

sizeof switch true union void

There are three types of constants: string constants, numeric constants,

and character constants.

1. String Constants: A string constants are a sequence of alphanumeric

characters enclosed in double quotation marks whose maximum length is 255

characters. In the following are examples of valid string constants: ("The

result=", "RS 2000.00", "This is test program"}. The invalid string constants are

like: (Race, "My name, 'this'}.

2. Numeric Constants: Numeric constants are positive or negative numbers.

There are four types of numeric constants: integer, floating point,

hexadecimal, and octal.

Integer Integer
Short integer (short)
LonQ inteQer (lonQ)

Float Single precision (float)
Double precision (double)
LonQ double

Hexa Short hexadecimal
LonQ hexadecimal
Unsigned char

Unsigned
Unsigned integer
Unsigned short integer
UnsiQned lonQ inteQer

Octal Short octal
LonQ octal

(a) Integer constants: Do not contain decimal points: int x,y; short int x,y;

longint x,y;

► Integer data: size (16 or 32) fill in -215 to 215- 1 for 16 bit and -231 to

231-1 for 32 bit.

► Short integer: fill in -215 to 215- 1.

► Long integer: fill in -231 to 231-1.

► Unsigned: fill in (0 to 65635) for 16 bit and (0 to 4,294, 967, 295) for

32 bit.

(b) Floating point constants: Positive or negative numbers are represented

in exponential form. The floating point constant consists of an optionally

(signed) integer or fixed point number (the mantissa) followed by the

letter E and e and an optionally signed integer (the exponent). Ex.

(901 0e 1 0, 77 .11 E- 11 J.

► Float 4 bytes.

► Double 8 bytes.

► Long double 12 or 16.

(c) Hexadecimal constants: Hexadecimal numbers are integer numbers of

base 16 and their digits are Oto 9 and A to F.

(d)Octal constants: Octal numbers are numbers of base 8 and their digits

are Oto 7.

3. Character Constants: A character represented within single quotes

denotes a character constant, for example 'A', 'a',':','?', etc ...

Its maximum size is 8 bit long, signed, and unsigned char are three distinct

types.

Char x; char x,y,z;

The backslash (\) is used to denote non graphic characters and other

special characters for a specific operations such as:

Special Escape Code:

Escape Code Description

\n New line. Position the screen cursor to the beginning of the next
line.

\t Horizontal TAB (six spaces). Move the screen cursor to the next tab
stop.

\r Carriage return. Position the cursor to the beginning of the current
line, do not advance to the next line.

\a Alert. Produces the sound of the svstem bell.
\b Backspace

\\ Backslash. Prints a backslash character.
\f Form feed

\v Vertical tab

\" Double quote. Prints a (") character.
\o Null character

\? question mark

\ooo Octal value

\xhhh Hexadecimal value

5. c+ + o:perettors:

;; ~;:: : ~;::: ::;;;:: : ~;::: ~;::: ~;:: : ~;::: ::;;;:: : ~;:: ;::~: ;::~: ;:::~ : ;::~: ;::~ : ;::~: ;::~: ;:::~ : ;::~: ;::~ : ;::~: ;::~ : ~? : ;::~: ;::~ : ;::~: ;::~: ;:::~ : ;::~: ;::~ : ;:: . ~;::. ~;::. ~;::. ~;::. ~;::. ~;::. ~;::. ~;:: . ~;::. ~;::. ~;::. ~;::. ~;::. ~;::. ~;::. ~;::. '' ,,

"
"

//

//

//

//

C++

;~ operators

"
//

Arithmetic operators

Assignment operators

Comparison and

operators

Bit wise logical operators

Special operators

'

'
'
<
<

logical Relational,equality,logical /

/

/

/

'
/

'
/

'

Unary, ternary, comma <
/

» / >
Scope, new&delete, other / ll /

. /, '. / , '. /, '. /, ~ /, '. /, '. /, '. /, '. /, ~ /, '. /, '. / , '. /, '. /, ~ /, '. /, '. /, '. /, '. / , ~ /s. /. '/ . '-/. '-/ . '-/. '-/. '-/ . '-/. '-/ . '-/. '-/. '/ . '-/. '-/ . '-/. '-/. ,)::~ /~;:'.; ~{; ~;:'.; ~;:'.; ~;°; ~;:'.; ~{; ~;:'.; ~;:'.; '- /, /, /'-. /,-. /'-. /, /, /, /, /'-. /, /, /'-. /,-. /, /, /, /, /,-. /, '-/. V_,. V_,. '-/. V_,. V . 'V. '-/. V_,. V_,. '-/. v.:.·

L. Arithmetic operators: These operators require two variables to be

evaluated:

- subtraction * multiplication + addition

/ division % modulo (remainder of an integer division)

The division result are:

Integer/ integer= integer ► 39/7=5

Integer/ float = float ► 39 /7 .0 =5.57

float / integer = float ► 39 .0/7 =5.57

float / float = float ► 39.0/7.0=5.57

while 39%5=7, since 39=7*5+4

Arithmetic operators as per precedence:

() for grouping the variables.

- Unary for negative number.

* I multiplication & division.

+ - addition and subtraction.

Example: X+y*X-Z, where X=5, Y=6, and Z=8.

5 + {6*5)-8 -+ {5+30)-8 -+ 35-8-+ 27

2. Assignment Operators: The operatonal assignment operator has the

form:

Ex: x=x+5;

Variable= variable operator expression;

y=y*l O;

The operational assignment operator can be written in the following

form:

Ex: x+=5;

Variable operator = expression

y*= 1 O;

It is used to assign back to a variable, a modified value of the present

holding:

= Assign right hand side (RHS) value to the left hand side (LHS).

+= Value of LHS var. will be added to the value of RHS and assign it
back to the var. in LHS.

-- Value of RHS var. will be subtracted to the value of LHS and
assign it back to the var. in LHS.

*= Value of LHS var. will be multiplied to the value of RHS and
assiqn it back to the var. in LHS.

/= Value of LHS var. will be divided to the value of RHS and assign
it back to the var. in LHS.

%= The remainder will be stored back to the LHS after integer
division is carried out between the LHS var. and the RHS var.

>>= Right shift and assign to the LHS.

<<= Left shift and assign to the LHS.

&= Bitwise AND operation and assign to LHS

1= Bitwise OR operation and assign to LHS

~= Bitwise complement operation and assign to LHS

This is a valid statements:

A=b=c+4;

C=3*(d=l 2.0/xJ;

Exercise:
Rewrite the equivalent statements for the following examples, and find it
results. Assume: X=2, Y=3, Z=4, V=l 2, C=8.

Example Equivalent Statement Result

X += 5 X=X+5 X f- 7
Y-= 8 Y = Y- 8 y f- -5
Z *= 5 Z=Z*5 z f-
V /= 4 V f-
C%= 3 Cf-

3. Comparision and logical operators: It has three types relational

operators, equality operators, and logical operators.

(a) Relational operators:< less than,> greater than,<= less than or equal,

>= greater than or equal, an expression that use relational operators

return the value of one if the relational is TRUE ZERO otherwise.

Ex: 3 > 4----+ false, 6 <=2 --+false, 10>-32----+ true, (23*7)>= (-67+89) ----+ true

(b) Equality operators:== equal to,!= not equal to

Ex: a=4, b=6, c=8. A==b----+false, (a*bJ !=c----+true, 's' == 'y' --+false.

(c) Logical operators: The logical expression is constructed from relational

expressions by the use of the logical operators not(!), and(&&), or(I I J.

AND(&&) Table: AND(&&) Table:

A B A&&B A B A &&B
T T T 1 1 1
T F F 1 0 0
F T F 0 1 0
F F F 0 0 0

OR (I I) Table:

A B
T T
T F
F T
F F

NOT(!) Table:

A
T
F

Examples:

Example 1:
a=4,b=5,c=6

A 11 B
T
T
T
F

IA
F
T

(a<b)&&(b<c) (a<b) I I (b>c)

T && T T I I T

T T

Example 2:

OR (I I) Table:

A B A 11 B
1 1 1
1 0 1
0 1 1
0 0 0

NOT (!) Table:

A IA
1 0
0 1

! (a<b) I I (c>b) (a<b) I I (b>c) &&(a>b) I I (a>c)

!(TI I I T T I I F && F I I F

F I I T T I I F I I F

T T I I F

T

Assume: X=0, Y=l, Z=l. Find the following expression:
M=++X 11 ++Y&&++Z

M = + + X 11 + + y && ++ z
= l I I (2 && 2)
= T II (T && T)
=T II T
=T
=l

(d) Bitwise logical operator:

& bitwise AND, A bitwise exclusive OR (XOR), I bitwise inclusive OR,

>> bitwise left shift,<< bitwise right shift,~ bitwise complement.

Ex: x=23 (0001 0111)

X=33 (0010 0001)

~x=132 (1110 1000)

X << 3

0 01000010

0 10000100

00001000 the resultant bit pattern will be (0000 1000)

X=5,y=2 -+ x&y (0000), xly (0111), xAy (0111)

(e) special operators:

1. Unary operator:

* Contents of the storage field to which a pointer is pointing.

& Address of a variable.

- Negative value (minus sign).

! Negative (0, if value f:. 0, 1 if value =O).

~ Bitwise complement.

++ Increment.

-- Decrement.

Type Forced type of conversion

Size of Size of the subsequent data type or type in byte.

2. Ternary operator: It is called conditional operator, it is like if else

construction:

Expression 1 ? expression 2 expression 3

If (v%2 == 0)

e = true

Else

e=false

E= (v%2 ==OJ? True : false

3. Comma operator:(,)

Int a,b,c; or it is used in control statements

4. Scope operator:(::) It is used in a class member function definition.

5. New and delete operators: it is a method for carrying out memory

allocations and deallocations.

6. Other operators: parentheses for grouping expressions, membership

operators.

Some variables are declared as integers but sometimes it may be

required to bet the result as floating point numbers. It is carried out in two

ways:

(A) Converting by assignment:

int x; floaty; x=y;

(B) Cast operator:

Result =(int) (19.2/4); or

Result= int (19 .2/ 4);

	1cpp
	Binder1
	1cpp_Page_012
	1cpp_Page_013
	1cpp_Page_014
	1cpp_Page_015
	1cpp_Page_016

	Binder2
	1cpp_Page_017
	1cpp_Page_018
	1cpp_Page_019
	1cpp_Page_020
	1cpp_Page_021

