
2.1 
 

 

Object Oriented Programming 

Compiled by:       Riad R. Sabti 

 

Programming in C++ 
 

 

C++ is a superset of an improved C language, which was extended with 

OOP constructs. C was developed in the early 1970’s, and applied to 

the development of the UNIX operating system. 

 

 

Functions 
 

As C is a functional language, it is based on the definition of functions. 

A function takes a number of arguments, and returns one value or none 

(void). C++ employs functions as well, but mainly as methods of classes. 

 

Functions are declared by naming similarly as variables, preceded by 

return-value type, and followed by arguments enclosed in parentheses:  
 

 int sum(int to);  Declaration of sum with one argument 

 int bar();    Declaration of bar with no arguments 

 void foo(int i, float x); Declaration of foo with two arguments 

 

To define a function, a body of statements is enclosed in braces: 
 

int sum( int to ) { 

    int res=0; 

    for ( int i=1; i<=to; i++ ) 

        res += i; 

    return res;        

}  
 

int bar() { 

    int a, b; 

    cin >> a >> b; 

    return (a+b)/2; 

}  



Programming in C++      2.2 

 

Program Structure 
 

Source programs in C consist of compiler directives, global declarations, 

structs, and function definitions. C++ added class definitions. 

 

Any number of functions can be defined in any order, of which one 

must be named “main” where execution starts and ends. Functions can 

be called from within other functions, providing they have already been 

declared. Library functions are declared by including header files. 

 

Example: Calculation of permutations nPr = 
  

      
 

 

#include <iostream.h> 

#include <stdlib.h> 

int factorial( int n ); 

 

void main() { 

    int r, n; 

    cout << “Enter r and n: ”;  

    cin >> r >> n; 

    float p = factorial(n) / factorial(n-r); 

    cout << “Permutation“ << r << “ of“ 

         << n << ” =” << p << ‘\n’;   

} 

int factorial( int n ) { 

    n = abs(n); 

    int fac = 1; 

    for ( int i=2; i<=n; i++ ) 

        fac *= i;   

    return fac;        

} 

 

Tutorial: Extend the example above by the following:  

1. Write a function to return nPr and use it in main above. 

2. Write a function to return nCr = 
  

         
 . 

3. Replace 1&2 by one function to return either P or C according to a 

flag variable, and use it in a modified main function.  



Programming in C++      2.3 

 

Argument Passing 
 

Argument passing is the primary way of providing functions with the 

variable data to operate on. Function headers usually include a dummy 

argument list enclosed in parentheses:     
 

<return-type> <function-name> ( <type> <var> , . . . ) 

 

When a function is called, the call statement must supply corresponding 

values (constants or pre-defined variables) of matching types. 

 
<function-name> ( <value> , . . . ) 

   

C++ allows passing of arguments by value only. Each value in the call 

list is copied to define the corresponding dummy that becomes a local 

variable within the function scope. To pass by reference indirectly, 

pointers (addresses) are used. 

 
Basic data types 
Argument lists may include built-in basic types of variables, declared 

simply by preceding their names with the type keyword, e.g.: 
void func (char c, int x, float a, float b); 

A call to func must supply the four required values, e.g.: 

func(‘a’, y, float(z), 5.0+z);   //y&z are pre-defined integers 

 

User-defined data types  
A record data structure in C (struct) can be used to combine several 

variables of possibly different types together, e.g.: 
struct time { 

int h, m; 

float s; }; 

 

Considering “struct time” as a new type, variables of this type can be 

declared, e.g.:  
struct time work, sleep; 



Programming in C++      2.4 

 

Variables of struct types are initialized by enclosing a list of member 

values in order within braces, or defined individually using the dot 

operator, e.g.: 
sleep = { 8, 44, 22.6 }; 

sleep.h = 10; 

sleep.m = sleep.m + 20; 

 

Functions may use struct variable arguments, so that when called, a 

pre-defined struct variable is copied to define a corresponding dummy. 

 

Example: Define a time struct of int hours and minutes. Write a 

function to obtain the difference between two given times in minutes. 

Add a main function to calculate difference between a given time and a 

fixed time at 10:30. 
  

#include <iostream.h> 

 

struct time { 

    int h, m;  

}; 

 

int timediff(struct time t1, struct time t2) { 

    return (t1.h-t2.h)*60+(t1.m-t2.m);  

} 

 

void main() { 

    struct time f={10,30}, g; 

    cout << “Enter time in hr & min: ”;  

    cin >> g.h >> g.m; 

    cout << “Time difference = “  

         << timediff( g, f ) << “ min\n”;   

} 

 

Tutorial: Extend the example above by the following functions, and 

modify main to test them:  

1. Function for difference between two given times in hours. 

2. Function to add time t2 to time t1. 

3. Function for the resulting time from addition of two given times. 



Programming in C++      2.5 

 

Arrays and Pointers 
Arrays are declared using the subscript operator [], e.g.: 

float x[50];   x is an array of 50 real elements   

int m[5][8];   m is a two-dimensional array of 5x8 integers 

char name[30];  name is an array of 30 characters (bytes) 

struct time t[5];  t is an array of 5 elements of struct time 

 

Strings are arrays of char, terminated by an ASCII 0 or (‘\0’). They 

are defined by enclosing characters in double quotes, e.g.: 

char name[30] = “ahmed”; declares 30 elements and defines first 6 

char name[] = “ahmed”; declares and defines 6 elements  

 

Pointers are variables that contain addresses. They are declared by 

putting an asterisk after the data type they point to, e.g.:  

char * str;  str is pointer to char 

int *xp, *yp;  xp and yp are pointers to integers 

 

The array name is a pointer to the first element of the array, e.g.:  

int a[30];   a is a pointer defined as &a[0]  

char s[] = ”ahmed”; s is a pointer defined as &s[0]  

 

Array elements are referenced by either subscripts or pointers, e.g.: 

cout<<a[0]; or cout<<*a;  prints first element of a 

s[3]=’a’; or *(s+3)=’a’;  changes string s to “ahmad”

     

Functions may use pointer arguments, which are passed address values 

when called. This enables referencing variables of the caller function. 

 

Tutorial: Write the following:  

1. Function to return the greater of two given integers  a & b. Add 

main to set a>b always. 

2. Function that sets a>b for any two integers a & b in the main. 

3. Function to invert an integer array. Add main to test it. 

4. Program to append character ‘s’ to a given string.   



Programming in C++      2.6 

 

Appendix 

C++ Grammar Tables 

 

Data Types 
 

The following table describes the basic data types of C++. The ”Size” 

in bytes and “Domain” values are dependent on the system used, with 

specified values given below for a 386 PC running Linux. Therefore, 

those values should only be considered relatively.  

 

 
 

The size of a data type on any particular system can be obtained with 

the sizeof operator, e.g.:      cout << sizeof( long ); 



Programming in C++      2.7 

 

Operators 
 

The following table includes C++ operators, each with its priority or 

precedence and the order of evaluation. 

 

 
 



Programming in C++      2.8 

 

Control Statements 
 

In addition to declarations, definitions, assignments, calls & messages,  

C++ defines all the usual flow control statements. Statements are 

terminated by a semicolon “;”. Multiple statements can be grouped into 

blocks by enclosing them in braces “{“ and “}”. Thus, stmt below is either 

a singular statement that ends with a semicolon, or a multiple 

statement block ending in a closing brace. 

 

 
 


