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Chapter 3: Rules and Law of Boolean algebra 

 

 Law of Boolean Algebra 

Three basic laws of Boolean algebra are: the commutative laws, the associative 

laws and the distributive law. 

 Commutative Laws 

Commutative laws for addition 

𝐴 +  𝐵 =  𝐵 +  𝐴 

 

 

 

Commutative laws for multiplication 

AB =  BA 

 

 

 Associative Laws 

The associative law of addition is stated as follows for three variables 

A + (B +  C) =  (A +  B) +  C =  (A +  C) +  B 
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The associative law of multiplication is stated as follows for three variables 

A (BC)  =  (AB) C =  (AC) B 

 

 

 Distributive Laws 

The distributive law is written for three variables as follows  

A (B +  C)  =  AB +  AC 

 

 

 Rules of Boolean Algebra 

Table 5.1 lists 12 basic rules that are useful in manipulating and simplifying 

Boolean expressions. Rules 1 through 9 will be viewed in terms of their application to logic 

gates. Rules 10 through 12 will be derived in terms of the simpler rules and the laws 

previously discussed. 

Table 5.1 Basic rules of Boolean algebra.  

1.  A +  0 =  A 2.  A +  1 = 1 

3.  A. 0 =  0 4.  A. 1 =  A 

5.  A +  A =  A 6.  A +  A̅  = 1 

7.  A. A =  A 8.  A. A̅  = 0 

9.  A̿  =  A 10.  A +  AB = A 

11.  A +  A̅B =  A +  B 12.  (A +  B)(A +  C)  =  A +  BC 



Logic Design   Lecturer: Ahmed Saeed 

Page 3 
 

Rule 1.  A +  0 =  A 

A variable OR with 0 is always equal to the variable. If the input variable A is 1, 

the output variable X is 1, which is equal to A. If A is 0, the output is 0, which is also equal 

to A. This rule is illustrated in Fig. (5.1), where the lower input is fixed at 0. 

 

 

Fig. (5.1). 

 

Rule 2.  A +  1 =  1 

A variable OR with 1 is always equal to 1. A 1 on an input to an OR gate produces 

a 1 on the output, regardless of the value of the variable on the other input. This rule is 

illustrated in Fig. (5.2), where the lower input is fixed at 1. 

 

 

Fig. (5.2). 

 

Rule 3.  A. 0 =  0 

A variable AND with 0 is always equal to 0. Any time one input to an AND gate is 

0, the output is 0, regardless of the value of the variable on the other input. This rule is 

illustrated in Fig. (5.3), where the lower input is fixed at 0. 

 

Fig. (5.3). 
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Rule 4.  A. 1 =  A 

A variable AND with 1 is always equal to the variable. If A is 0 the output of the 

AND gate is 0. If A is 1, the output of the AND gate is 1 because both inputs are now 1s. 

This rule is shown in Fig. (5.4), where the lower input is fixed at 1. 

 

Fig. (5.4). 

 

Rule 5.  A +  A =  A 

A variable OR with itself is always equal to the variable. If A is 0, then 0 + 0 = 0; 

and if A is 1, then 1 + 1 = 1. This is shown in Fig. (5.5), where both inputs are the same 

variable. 

 

Fig. (5.5). 

 

Rule 6.  A + A̅  =  1 

A variable OR with its complement is always equal to 1. If A is 0, then 0 +  0̅  =

 0 +  1 =  1. If A is l, then 1 +  1̅  =  1 +  0 =  1. See Fig. (5.6), where one input is the 

complement of the other. 

 

Fig. (5.6). 
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Rule 7.  A. A =  A 

A variable AND with itself is always equal to the variable. If A = 0, then 0.0 = 0; 

and if A = 1. then 1.1 = 1. Fig. (5.7) illustrates this rule. 

 

Fig. (5.7). 

 

Rule 8.  A. A̅  =  0 

A variable AND with its complement is always equal to 0. Either A or A̅ will always 

be 0: and when a 0 is applied to the input of an AND gate. The output will be 0 also. Fig. 

(5.8) illustrates this rule. 

 

Fig. (5.8). 

 

Rule 9.  A̿  =  A 

The double complement of a variable is always equal to the variable. If you start with the 

variable A and complement (invert) it once, you get A̅. If you then take A̅ and complement 

(invert) it, you get A, which is the original variable. This rule is shown in Fig. (5.9) using 

inverters. 

 

Fig. (5.9). 
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equal 

Rule 10.  𝐴 +  𝐴𝐵 =  𝐴 

This rule can be proved by applying the distributive law, rule 2, and rule 4 as 

follows: 

A +  AB =  A (1 +  B)   Factoring (distributive law) 

=  A. l      Rule 2: (1 + B) = 1 

=  A      Rule 4: A. 1 = A 

The proof is shown in Table 5.2, which shows the truth table and the resulting logic circuit 

simplification. 

Table 5.2 

 

 

 

 

Rule 11.  A + A̅B =  A +  B 

This rule can be proved as follows: 

A + A̅B =  (A +  AB)  +  A̅B    Rule 10: A =  A +  AB 

= A +  AB + A̅B                 Rule 7: A =  AA 

= A + B(A + A̅)                  Rule 6:  (A + A̅)   = 1 

= A + B. 1                 Rule 4:  B. 1 = B 

=  A +  B      

The proof is shown in Table 5.3, which shows the truth table and the resulting logic 

circuit simplification. 

 

 

 

 

 

A B AB A + AB 

0 0 0 0 

0 1 0 0 

1 0 0 1 

1 1 1 1 
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Table (5.3). 

A B AB A + AB A + B 

0 0 0 0 0 

0 1 1 1 1 

1 0 0 1 1 

1 1 0 1 1 

 

 

Rule 12.  (A +  B)(A +  C)  =  A +  BC 

This rule can be proved as follows: 

(A +  B)(A +  C)  =  AA +  AC +  AB +  BC   Distributive law 

=  A +  AC +  AB +  BC     Rule 7: AA =  A 

=  A (1 +  C)  +  AB +  BC     Rule 2: 1 +  C =  1 

=  A. 1 +  AB +  BC      Factoring (distributive law) 

=  A (1 +  B)  +  BC      Rule 2: 1 +  B =  1 

=  A. 1 +  BC       Rule 4: A. 1 =  A 

=  A +  BC 

The proof is shown in Table 5.4, which shows the truth table and the resulting logic circuit 

simplification. 

Table (5.4). 

A B C A+B A+C (A+B)(A+C) BC A+BC 

0 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 

0 1 0 1 0 0 0 0 

0 1 1 1 1 1 1 1 

1 0 0 1 1 1 0 1 

1 0 1 1 1 1 0 1 

1 1 0 1 1 1 0 1 

1 1 1 1 1 1 1 1 

 

 

 

equal 

equal 
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 De Morgan's Theorems 

De Morgan, proposed two theorems that are an important part of Boolean algebra. 

The two theorems show in equation below: 

𝐴𝐵̅̅ ̅̅  =  �̅�  + �̅�. . . . . . . . . . . . .1 

𝐴 +  𝐵̅̅ ̅̅ ̅̅ ̅̅ ̅  =  �̅��̅�. . . . . . . . . . . . .2 

Eq1: The complement of two or more AND variables is equivalent to the OR of the 

complements of the individual variables. 

Eq2: The complement of two or more OR variables is equivalent to the AND of the 

complements of the individual variables. 

 

AB = A + B 

A B AB A + B 

0 0 1 1 

0 1 1 1 

1 0 1 1 

1 1 0 0 

 

 

 

 

A + B = AB 

A B AB A + B 

0 0 1 1 

0 1 0 0 

1 0 0 0 

1 1 0 0 

 

 

 

equal 

equal 
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Example: Apply De Morgan's theorems to the expressions 𝑋𝑌𝑍̅̅ ̅̅ ̅̅ ,   𝑋 + 𝑌 + 𝑍̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,   𝑊𝑋𝑌𝑍̅̅ ̅̅ ̅̅ ̅̅ ̅ and 

𝑊 + 𝑋 + 𝑌 + 𝑍̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Solution:  

𝑋𝑌𝑍̅̅ ̅̅ ̅̅  =  𝑋 ̅ +  𝑌 ̅ +  �̅� 

𝑋 +  𝑌 +  𝑍̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  =  𝑋 ̅𝑌 ̅�̅� 

𝑊𝑋𝑌𝑍̅̅ ̅̅ ̅̅ ̅̅ ̅  =  𝑊 ̅̅ ̅̅ +  𝑋 ̅ +  𝑌 ̅ +  �̅� 

𝑊 +  𝑋 +  𝑌 +  𝑍̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  =  𝑊 ̅̅ ̅̅ 𝑋 ̅𝑌 ̅�̅� 

 

Example: Apply De Morgan's theorems to the expressions 𝐴 +  𝐵𝐶̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  +  𝐷 (𝐸 +  �̅�̅̅ ̅̅ ̅̅ ̅̅ ̅)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 

Solution: 

Step l. Identify the terms to which you can apply De Morgan's theorems, and think of each 

term as a single variable. Let 𝐴 +  𝐵𝐶̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = X and 𝐷 (𝐸 +  �̅�̅̅ ̅̅ ̅̅ ̅̅ ̅) = Y. 

Step 2. Since 𝑋 +  𝑌̅̅ ̅̅ ̅̅ ̅̅ ̅  =  �̅� �̅�,  

𝐴 +  𝐵𝐶̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  +  𝐷 (𝐸 +  �̅�̅̅ ̅̅ ̅̅ ̅̅ ̅)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= (𝐴 +  𝐵𝐶̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
) . ( 𝐷 (𝐸 +  �̅�̅̅ ̅̅ ̅̅ ̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

Step 3. Use rule 9 (�̿�  =  𝐴) to cancel the double bars over the left term (this is not part of 

De Morgan's theorem).  

= (𝐴 +  𝐵𝐶̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
) . ( 𝐷 (𝐸 +  �̅�̅̅ ̅̅ ̅̅ ̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) = (𝐴 +  𝐵𝐶̅)  . ( 𝐷 (𝐸 +  �̅�̅̅ ̅̅ ̅̅ ̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

Step 4. Applying De Morgan's theorem to the second term, 

(𝐴 +  𝐵𝐶̅)  . ( 𝐷 (𝐸 +  �̅�̅̅ ̅̅ ̅̅ ̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) = (𝐴 +  𝐵𝐶̅)  . ( �̅� + (𝐸 + �̅�̿̿ ̿̿ ̿̿ ̿̿ ̿))  

Step 5. Use rule 9 (�̿�  =  𝐴) to cancel the double bars over the 𝐸 +  �̅� part of the term. 

(𝐴 +  𝐵𝐶̅)  . ( �̅� + (𝐸 + �̅�̿̿ ̿̿ ̿̿ ̿̿ ̿)) =  (𝐴 +  𝐵𝐶̅)  . ( �̅� + (𝐸 + �̅�))  

Homework: Apply De Morgan's theorems to the expressions: 

1-  

2-  
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 Simplification of Boolean Expressions  

Many times in the application of Boolean algebra, we have to reduce a particular 

expression to its simplest form or change its form to a more convenient one in order to 

implement the expression most efficiently, the approach taken is to use the basic 

manipulation and simplify an expression. 

 

Example: Using Boolean algebra techniques, simplify this expression: 

𝐴𝐵 +  𝐴 (𝐵 +  𝐶)  +  𝐵 (𝐵 +  𝐶) 

Solution: 

Step 1: Apply the distributive law to the second and third terms in the expression, as 

follows: 

𝐴𝐵 +  𝐴𝐵 +  𝐴𝐶 +  𝐵𝐵 +  𝐵𝐶 

Step 2: Apply rule 7 (𝐵𝐵 =  𝐵) to the fourth term. 

𝐴𝐵 +  𝐴𝐵 +  𝐴𝐶 +  𝐵 +  𝐵𝐶 

Step 3: Apply rule 5 (𝐴𝐵 +  𝐴𝐵 =  𝐴𝐵) to the first two terms. 

𝐴𝐵 +  𝐴𝐶 +  𝐵 +  𝐵𝐶 

Step 4: Apply rule 10 (𝐵 +  𝐵𝐶 =  𝐵) to the last two terms. 

𝐴𝐵 +  𝐴𝐶 +  𝐵 

Step 5: Apply rule 10 (𝐴𝐵 +  𝐵 =  𝐵) to the first and third terms. 

𝐵 + 𝐴𝐶 

At this point the expression is simplified as much as possible. 

 

 

Fig. (5.10) Gate circuits for example above. 

B 

A 

C 
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Homework: Simplify the Boolean expressions: 

a) (𝐴 + �̅�)(𝐴 + 𝐶) 

b) (𝐴 + �̅�)(𝐴𝐵 + 𝐴𝐵𝐶̅) 

c) 𝐴𝐵 + (�̅� + �̅�)𝐶 + 𝐴𝐵 

 

 Boolean Expressions for Gate Networks 

Boolean expressions can be computed by implementing them in hardware using 

logic gates. This is most easily seen with an example. To find the Boolean expression for 

any logical circle, start from the input to the left heading to the final output of the circle by 

typing the output of each gate. For example take the logic circuit below: 

 

 

 

We can calculate the Boolean expression as follows: 

1. Boolean expression for AND gate with two input 𝐴, �̅� is 𝐴�̅�. 

2. Boolean expression for AND gate with two input 𝐴, 𝐶̅ is 𝐴𝐶̅. 

3. Boolean expression for OR gate with two input 𝐴�̅�, 𝐴𝐶̅ is 𝐴�̅�  +  𝐴𝐶̅ 

The final out of the circle is: 𝑌 =  𝐴�̅�  +  𝐴𝐶̅. 
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Example: Write the Boolean expression for logic circuit below: 

 

 

 

 

 

 

 

 

Homework: Write the Boolean expression for logic circuit below: 
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 Gate Networks for Boolean Expressions 

Now will discuss how to find logic circuit by using Boolean expression. Using some 

example will be easier to understand. To find the circuit for example below: 

𝑌 =  𝐴𝐵 (𝐶�̅�  +  𝐸𝐹) 

When dividing this Boolean expression, we find that A, B and (𝐶�̅�  +  𝐸𝐹) are three 

input for AND gate, the expression (𝐶�̅�  +  𝐸𝐹) can take 𝐶, �̅� to AND gate and take 𝐸, 𝐹 

to another AND gate then take the output for the tow AND gate to OR gate.  

 

So the gate that we will used to find the circuit 𝐴𝐵 (𝐶�̅�  +  𝐸𝐹): 

1- NOT gate to represent �̅�. 

2- AND to represent each 𝐶�̅�, 𝐸𝐹. 

3- OR gate to represent (𝐶�̅�  +  𝐸𝐹). 

4-  AND to represent the output 𝑌. 

 

 

Homework: Draw the logic circuit for the Boolean expression below: 

1. 𝐴�̅�  +  �̅�𝐵 

2. 𝐴𝐵 +  𝐴𝐵̅̅ ̅̅  +  �̅�𝐵𝐶 

3. �̅�𝐵 (𝐶 +  𝐷) 
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  Boolean expression via a Truth Table 

The truth table can be used to write a Boolean equation. To design and implement the 

problem, Boolean logical expressions (equation) are derived for the output logical function 

in terms of the binary variables representing the inputs. The logic expressions are given 

either in form of Sum of Product (SoP), or in the form of Product of Sum (PoS). 

1. Sum – of – Product (SoP) 

This form sometimes called ‘Minterm’. A product term which contain each of the 

n-variable factors in either complemented or un-complemented form for output digits ‘1’ 

only, is called SoP. For example the truth table below: 

Input Output 

A B C F 

0 0 0 1 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 

 

The logical SoP expression for the output digit ‘1’ is written as, 

𝐹 = �̅��̅�𝐶̅ + �̅�𝐵𝐶̅ + �̅�𝐵𝐶 +  𝐴𝐵𝐶̅ + 𝐴𝐵𝐶 

This function can be put in another form such as  

𝐹 =  ∑ 0, 2, 3, 6, 7  

Since F = 1 in rows 0, 2, 3, 6, 7 only. 

 

 

 

 

�̅��̅�𝐶̅ 

�̅�𝐵𝐶 

�̅�𝐵𝐶̅ 

𝐴𝐵𝐶̅ 

𝐴𝐵𝐶 

�̅��̅�𝐶̅ + �̅�𝐵𝐶̅ + �̅�𝐵𝐶 +  𝐴𝐵𝐶̅ + 𝐴𝐵𝐶 
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2. Product – of – Sum (PoS) 

  A logical equation can also be expressed as a Product of Sum (PoS) form 

(sometimes this method is called ‘Maxterm’). This is done by considering the combination 

for F=0 (output = 0). So (for above example) form truth table F = 0 is in rows 1, 4 and 5 

hence: 

𝐹 =  (𝐴 +  𝐵 +  𝐶̅) (𝐴 ̅ +  𝐵 +  𝐶) (�̅�  +  𝐵 +  𝐶̅) 

The PoS can be expressed as:  

𝐹 =  𝛱 1, 4, 5 

 

Example: - Put F in SoP and PoS form and simplifying it: 

A B F 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

 

Solution: - 

SoP: 

𝐹 =  ∑ 0, 1, 3  

                   =  �̅��̅�  +  �̅�𝐵 +  𝐴𝐵 

      =  �̅� (�̅�  +  𝐵)  +  𝐴𝐵 

                  =  �̅�  +  𝐴𝐵 

       𝐹 =  𝐴 ̅ +  𝐵 

PoS: 

      𝐹 =  𝛱 2 

           =  �̅�  +  𝐵 

  

Example: - Put in SoP form: - 𝐹 =  𝐴�̅�𝐶 + �̅�𝐵𝐶 +  𝐴𝐵𝐶  

Solution: - 𝐹 =  𝐴�̅�𝐶 +  �̅�𝐵𝐶 +  𝐴𝐵𝐶 

                      101        011        111 

      𝐹 =  ∑ 3, 5, 7 
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Example: - Put in Pos form and draw the truth table then find SoP: -  

𝐹 =  (𝐴 +  𝐵 +  𝐶̅) (𝐴 +  �̅�  +  𝐶) (�̅�  + �̅�  +  𝐶̅) (�̅�  + �̅�  +  𝐶) 

Solution: -  

𝐹 =  (𝐴 +  𝐵 +  𝐶̅) (𝐴 +  �̅�  +  𝐶) (�̅�  + �̅�  +  𝐶̅) (�̅�  + �̅�  +  𝐶) 

  001             010               111     110 

      F = Π 1, 2, 6, 7 

A B C F 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 0 

1 1 1 0 

 

      𝐹 =  ∑ 0, 3, 4, 5 

     𝐹 =  �̅��̅�𝐶̅  +  �̅�𝐵𝐶 +  𝐴�̅�𝐶̅  +  𝐴�̅�𝐶 

 

Example: - Represent F1, F2 in SoP and PoS form then simplified F1 and F2 using 

Boolean algebra and implement the function. 

A B C F1 F2 

0 0 0 0 1 

0 0 1 1 0 

0 1 0 1 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 0 
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Solution: 

In SoP  

𝐹1 =  ∑ 1, 2, 3, 5, 6, 7 

𝐹1 =  �̅��̅�𝐶 + �̅�𝐵𝐶̅  + �̅�𝐵𝐶 +  𝐴�̅�𝐶 +  𝐴𝐵𝐶̅  +  𝐴𝐵𝐶 

𝐹1 =  �̅� (�̅�𝐶 +  𝐵𝐶̅  +  𝐵𝐶 ) +  𝐴 (�̅�𝐶 +  𝐵𝐶̅  +  𝐵𝐶) 

𝐹1 =  �̅� [�̅�𝐶 +  𝐵(𝐶̅  +  𝐶)] +  𝐴 [�̅�𝐶 +  𝐵(𝐶̅  +  𝐶)] 

𝐹1 =  �̅� [�̅�𝐶 +  𝐵] +  𝐴 [�̅�𝐶 +  𝐵] 

𝐹1 =  �̅� [𝐶 +  𝐵] +  𝐴 [𝐶 +  𝐵] 

𝐹1 =  �̅�𝐶 +  �̅�𝐵 +  𝐴𝐶 +  𝐴𝐵 

𝐹1 =  𝐵(�̅�  +  𝐴) +  𝐶(�̅� + 𝐴) 

𝐹1 =  𝐵 +  𝐶 

 

 

 

In PoS 

𝐹1 = 𝛱 0, 4 

𝐹1 = (𝐴 +  𝐵 +  𝐶) (�̅�  +  𝐵 +  𝐶) 

𝐹1 = 𝐴�̅�  +  𝐴𝐵 +  𝐴𝐶 +  �̅�𝐵 +  𝐵𝐵 +  𝐵𝐶 +  �̅�𝐶 +  𝐵𝐶 +  𝐶𝐶 

𝐹1 = 𝐴𝐵 +  𝐴𝐶 +  �̅�𝐵 +  𝐵 +  𝐵𝐶 +  �̅�𝐶 +  𝐵𝐶 +  𝐶 

𝐹1 = 𝐴𝐵 +  𝐴𝐶 +  �̅�𝐵 +  𝐵(1 + 𝐶)  +  �̅�𝐶 +  𝐵(1 +  𝐶) 

𝐹1 = 𝐴𝐵 +  𝐴𝐶 +  �̅�𝐵 +  𝐵 +  �̅�𝐶 +  𝐵 

𝐹1 = 𝐵(𝐴 +  �̅�) +  𝐶(�̅�  +  𝐴) + 𝐵 + 𝐶 

𝐹1 = 𝐵 + 𝐶 + 𝐵 + 𝐶 

𝐹1 = 𝐵 + 𝐶 

 

 

 

 

 

Homework solution for F2 
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Converting SoP to PoS and Vice Versa  

To convert from SoP to PoS and Vice Versa we must follow three steps: 

1. Evaluate each product term in the SoP (or PoS) expression that determine the binary 

numbers which represent the product term. 

2. Determine all the binary numbers not included in the evaluation in step1. 

3. Write the equivalent sum term for each binary number form step2 and express in 

PoS (or SoP) form 

SoP to PoS: If any variable is missing from any term, we must add these missing variable 

to that term, by multiplying the term by the missing variable. 

For example if the variable B is missing from the form 𝐴𝐶, we must multiplying the term 

𝐴𝐶 by (𝐵 +  �̅�): 𝐴𝐶 (𝐵 +  �̅�) 

PoS to SoP: If any variable is missing from any term, we must add these missing variable 

to that term, by adding the term by the missing variable. 

For example if the variable 𝐴 is missing from the form (𝐵 +  𝐶), we must adding 𝐴�̅� to 

the term (𝐵 +  𝐶̅):   

=  [(𝐵 + 𝐶̅)  +  𝐴�̅�] 

=  (𝐵 + 𝐶̅  +  𝐴) (𝐵 + 𝐶̅  +  �̅�) 

 

Example: - Convert the SoP expression to PoS: 𝐹 =  𝐵 +  𝐴𝐶 

Solution: 

1th method 

𝐹 =  𝐵 +  𝐴𝐶 

𝐹 =  𝐵 (𝐴 + �̅�) (𝐶 +  𝐶̅)  +  𝐴𝐶 (𝐵 +  �̅�)  

𝐹 =  𝐵 (𝐴𝐶 +  𝐴𝐶̅  +  �̅�𝐶 +  �̅�𝐶̅)  +  𝐴𝐵𝐶 +  𝐴�̅�𝐶 

𝐹 =  𝐴𝐵𝐶 +  𝐴𝐵𝐶̅  +  �̅�𝐵𝐶 + �̅�𝐵𝐶̅  +  𝐴𝐵𝐶 +  𝐴�̅�𝐶 

𝐹 =  𝐴𝐵𝐶̅  +  �̅�𝐵𝐶 +  �̅�𝐵𝐶̅  +  𝐴𝐵𝐶 +  𝐴�̅�𝐶 

𝐹 =  ∑ 2, 3, 5, 6, 7  

𝐹 =  𝛱 0, 1, 4 

𝐹 =  (𝐴 +  𝐵 +  𝐶) (𝐴 +  𝐵 +  𝐶̅) (�̅�  +  𝐵 +  𝐶) 
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�̅�  =  (�̅�  +  �̅�  +  𝐶̅) (𝐴 +  𝐵 +  𝐶̅) (�̅�  +  𝐵 +  𝐶) (�̅�  + �̅�  +  𝐶) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝐹 =  𝐴𝐵𝐶 + + �̅�𝐵𝐶 +  𝐴�̅�𝐶 + �̅�𝐵𝐶̅   

 

2th method 

𝐹 =  𝐵 +  𝐴𝐶 

 

 

 

 

 

 

 

 

 

𝐹 =  ∑ 2, 3, 5, 6, 7  

𝐹 =  𝛱 0, 1, 4 

𝐹 =  (𝐴 +  𝐵 +  𝐶) (𝐴 +  𝐵 +  𝐶̅) (�̅�  +  𝐵 +  𝐶) 

 

Example: - Convert the PoS expression to SoP:  

𝐹 =  (𝐴 +  𝐵) (�̅�  +  𝐶) (𝐴 +  𝐵 +  𝐶̅) 

Solution: 

1th method 

𝐹 =  [(𝐴 +  𝐵)  +  𝐶𝐶̅] [(𝐴 +  𝐶)  +  𝐵�̅�] [(𝐴 +  𝐵 +  𝐶̅)] 

F =  (𝐴 +  𝐵 +  𝐶) (𝐴 +  𝐵 +  𝐶) (𝐴 +  𝐵 +  𝐶) (𝐴 +  𝐵 +  𝐶) (𝐴 +  𝐵 +  𝐶)  

      000                   001        100         110          001 

 

𝐹 =  𝛱 0, 1, 4, 6 

𝐹 =  ∑ 2, 3, 5, 7  

𝐹 =  �̅�𝐵𝐶̅  +  �̅�𝐵𝐶 +  𝐴�̅�𝐶 +  𝐴𝐵𝐶 

 

 

 

 

A B C F 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 
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2th method 

𝐹 =  (𝐴 +  𝐵) (�̅�  +  𝐶) (𝐴 +  𝐵 +  𝐶̅) 

 

 

 

 

 

 

 

 

𝐹 =  𝛱 0, 1, 4, 6 

𝐹 =  ∑ 2, 3, 5, 7  

𝐹 =  �̅�𝐵𝐶̅  +  �̅�𝐵𝐶 +  𝐴�̅�𝐶 +  𝐴𝐵𝐶 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B C F 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 
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3.8 Simplification using Karnaugh-map 

A Karnaugh map provides a systematic method for simplifying Boolean 

expressions and, if properly used, will produce the simplest SOP or POS expression. As 

you have seen, the effectiveness of algebraic simplification depends on your familiarity 

with all the laws, rules, and theorems of Boolean algebra and on your ability to apply them. 

The Karnaugh map, on the other hand, provides a "cookbook" method for simplification. 

The Karnaugh map is an array of cells in which each cell represents a binary value of the 

input variables. The cells are arranged in a way so that simplification of a given expression 

is simply grouping the cells.  

Karnaugh maps can be used for expressions with two, three, four, and five 

variables. The number of cells in a Karnaugh map is equal to the total number of possible 

input variable combinations as is the number of rows in a truth table. 

For two input variables, the number of cells is equal to 22 = 4 cells 

 

For three input variables, the number of cells is equal to 23 = 8 cells 

 

For 4 input variables, the number of cells is equal to 24 = 16 cells 
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Not:  

1. Number of 1’s or 0’s in one group must be 1, 2, 4, 8, and 16. 

2. We must take maximum number of 1’s or 0’s in one group. 

3. We must take at least one-time the 1’s or 0’s. 

 

The 2- variable K-map: 

 

 

1 1 

0 0 

1 1 

0 1 

F = A̅          Sop 

F = A̅         PoS 

 

F = A̅ + B          Sop 

F = A̅ + B          PoS 
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The 3- variable K-map: 

 

 

The 4- variable K-map:  

 

 

 

1 1 

F = 1 SoP  

 
1 1 

1 

1 1 

1 

0 0 

0 0 

1 

1 1 

1 

0 0 

0 0 1 1 

1 

1 

1 

1 

1 

1 

1 

1 

0 0 

0 

0 

0 0 

0 

0 

0 0 

0 

0 

0 0 

0 

0 

F = C̅          Sop 

F = C̅          PoS 

 

F = A̅ + C̅          Sop 

F = A̅ + C̅          PoS 

 

F = D̅          Sop 

F = D̅          PoS 
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Different examples in K-map 

 

1 

1 

1 

1 

1 

1 

1 

1 

0 0 

0 

0 

0 0 

0 

0 1 

1 1 

1 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

0 0 

0 

0 

0 0 

0 

0 F = B̅D̅          Sop 

F = B̅D̅          PoS 

 

F = A̅ + B̅ + C + D̅          Sop 

F = A̅ + B̅ + C + D̅          PoS 
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Example: - Simplify the following Boolean function using K-map: 

 F =  A̅ + AB̅ + ABC̅ 

Solution: The equation is SoP and the domain (A, B, C) there are missing variable is term 

1&2 so: 

 

 

 

 

 

 

 

 

 

 

Then the K-map must have 23=8 cells 

 

A B C F 

0 0 0 1 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 
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Example: - Implement the logic function by truth table below using K-map. 

 

 

 

 

 

 

 

 

 

 

Solution:  

 

 

 

 

A B C F 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 1 

1 

1 1 

1 

0 0 

0 0 1 1 

1 

1 

1 1 

1 

0 0 

0 0 F = A̅C̅ + BC 1 1 

1 0 0 

0 

0 1 

F =  A̅ + B̅ + C̅ 

A 

B 

C 
F 
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"Don't Care" Conditions  

Sometimes a situation arises in which some input variable combinations are not 

allowed. For example, recall that in the BCD code there are six invalid combinations: 1010, 

1011, 1100, 1101, 1110, and 1111. Since these un-allowed states will never occur in an 

application involving the BCD code, they can be treated as "don't care" terms with respect 

to their effect on the output. That is, for these "don't care" terms either a 1 or a 0 may be 

assigned to the output: it really does not matter since they will never occur. The "don't care" 

terms can be used to advantage on the Karnaugh map. Fig. (5-9) shows that for each "don't 

care" term, an X is placed in the cell. When grouping the 1 s, the Xs can be treated as 1s to 

make a larger grouping or as 0s if they cannot be used to advantage. The larger a group, 

the simpler the resulting term will be. 

The truth table in Fig: (5-9) (a) describes a logic function that has a 1 output only 

when the BCD code for 7, 8, or 9 is present on the inputs. If the "don’t cares" are used as 

1s, the resulting expression for the function is A +  BCD, as indicated in part (b). If the 

"don't cares" are not used as 1s, the resulting expression is AB̅C̅  + A̅BCD: so you can see 

the advantage of using "don't care" terms to get the simplest expression. 

 

Fig: (5.9). 
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Example: - Simplify the following Boolean function using K-map: F= ∑1, 3, 7, 11, 15 

Which has the don’t car conditions d = ∑ 0, 2, 5 

Solution: 

a) 

 

 

b)  

 

 

 

 

 

 

 

 

 

 

1 

1 

1 

1 

1 

X 0 0 

0 

0 

0 0 

0 

0 

0 

0 

0 

0 

F = �̅��̅� + CD  

1 

1 

1 

1 

1 0 

X 

X 

0 

1 

1 

1 

1 

1 

X 0 0 

0 

0 

0 0 

0 

0 

0 

0 

0 

0 

F = A̅D + CD  

1 

1 

1 

1 

1 0 

X 

X 

0 
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Example: Design a BCD code to excess-3 code converter and implement the function. 

Solution: 

 

BCD I/P Excess-3 O/P 

A B C D X Y W Z 

0 0 0 0 0 0 1 1 

0 0 0 1 0 1 0 0 

0 0 1 0 0 1 0 1 

0 0 1 1 0 1 1 0 

0 1 0 0 0 1 1 1 

0 1 0 1 1 0 0 0 

0 1 1 0 1 0 0 1 

0 1 1 1 1 0 1 0 

1 0 0 0 1 0 1 1 

1 0 0 1 1 1 0 0 

1 0 1 0 X X X X 

1 0 1 1 X X X X 

1 1 0 0 X X X X 

1 1 0 1 X X X X 

1 1 1 0 X X X X 

1 1 1 0 X X X X 

 

 

 

 X =  A +  BC +  BD                Y =  B̅C +  B̅D +  BC̅D̅ 

1 

1 

1 

1 

1 1 

X X 

X 1 

X X 

X 

X X 

X 

X X 

X 

1 

1 

1 

1 1 
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D̅       D       C̅       C       B̅       B        A̅       A 

 

     W =  CD +  C̅D̅      Z =  D̅ 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Homework: Design a BCD code to gray code converter and implement the function. 

1 

1 

1 

1 

1 

1 

X X 

X 

1 

X X 

X 

X X 

X 

X X 

X 

1 

1 

1 

1 

1 

  


